
CS 110
Computer Architecture

Cache III Direct-mapped & Set-
Associative Cache

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao

Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html

School of Information Science and Technology (SIST)
ShanghaiTech University 

2025/4/22



Administratives

2

• Mid-term II tentatively May 15th; you can bring 2-page A4-
sized double-sided cheat sheet, handwritten only! 

• Project 2.1 released, start early, ddl May 5th!!!

• HW5 released, ddl May. 7th.

• Lab 9 checking this week. Lab 10 will be released and checked 
next week (longan nano RISC-V board).

• CS110-only students need the board for lab 10 & 11 only;

• CS110P project 4 will use this board to develop a game;

• Keep them really well, because you have to return the board 
after lab/project checking;

• Discussion this week on cache

• Discussion Apr. 28th on midterm II review



Administratives

3

• Special arrangement for Lab sessions during Labour Day Holiday

• Apr. 27th, 18:00-19:40: Thursday lab sessions (Lab 7/8/9) to 
check Lab 10; (SIST 1B-106, 1B-108, SIST 1B-110)

• Apr. 28th, 18:00-19:40: Monday lab sessions (Lab 1/2) to 
check Lab 10;

• Apr. 29th, 19:50-21:30: Tuesday lab sessions (Lab 3/4/5/6) to 
check Lab 10;

• May 6th/8th/12th: Tuesday/Thursday/Monday lab sessions to 
check Lab 11, respectively, which is to prepare for project 4, 
Longan nano RISC-V development. The circuit boards will be 
distributed during the lab sessions.



4

Cache Design: Placement Policies

Fully associative cache Replacement Policy Write Policy

Fully 
Associative 

Cache

Put a new line 
anywhere

Direct 
Mapped 
Cache

Put a new line 
in one specific 

place

(This lecture)

Set-Associative 
Cache

(Later this lecture)

Fully associative caches 
need expensive hardware. Less hardware.

# Memory blocks >> # Cache blocks
We need to carefully place memory blocks into cache blocks



5

Direct Mapped Cache: Hardware

Fully associative cache Replacement Policy Write Policy

Much simpler to implement 
than Fully Associative! Just 
check one tag/line, and not 
all lines.



6

Direct Mapped Cache

Fully associative cache Replacement Policy Write Policy

● Placement policy: The data at a 
memory address can be stored at 
exactly one possible block in the 
cache.
○ To check for existence in the 

cache, we only need to look in 
a single location in the cache.

Tag VB LRU Dirty DATA 

How do we ensure this?



7

Direct Mapped Cache

Fully associative cache Replacement Policy Write Policy

● Placement policy: The data at a 
memory address can be stored at 
exactly one possible block in the 
cache.
○ To check for existence in the 

cache, we only need to look in 
a single location in the cache.

Tag VB LRU Dirty DATA 

16-bit
Address

o-bit
offset

t-bit
tag

i-bit
index

How do we ensure this?

○ Add extra field to indicate 
which exact block to check.

index to select 
block in cache



8

Direct Mapped Cache-Examples I

Fully associative cache Replacement Policy Write Policy

 Index number k goes to the kth cache block;
 Assume 4B block size; 6-bit address;

6-bit
Address

2-bit
offset

2-bit
tag

2-bit
index

Address
Tag Index Offset
00 00 xx
00 01 xx
00 10 xx
00 11 xx
01 00 xx
01 01 xx
01 10 xx
01 11 xx
10 00 xx
10 01 xx
10 10 xx
10 11 xx
11 00 xx
11 01 xx
11 10 xx
11 11 xx

Tag DATA Flag
Index 00

Index 01

Index 10

Index 11



9

Direct Mapped Cache-Examples I

Fully associative cache Replacement Policy Write Policy

 Index number k goes to the kth cache block;
 Assume 4B block size; 6-bit address;

6-bit
Address

2-bit
offset

2-bit
tag

2-bit
index

Address
Tag Index Offset
00 00 xx
00 01 xx
00 10 xx
00 11 xx
01 00 xx
01 01 xx
01 10 xx
01 11 xx
10 00 xx
10 01 xx
10 10 xx
10 11 xx
11 00 xx
11 01 xx
11 10 xx
11 11 xx

Tag DATA Flag
Index 00

Index 01

Index 10

Index 11



10

Direct Mapped Cache-Examples I

Fully associative cache Replacement Policy Write Policy

 Index number k goes to the kth cache block;
 Assume 4B block size; 6-bit address;

6-bit
Address

2-bit
offset

2-bit
tag

2-bit
index

Address
Tag Index Offset
00 00 xx
00 01 xx
00 10 xx
00 11 xx
01 00 xx
01 01 xx
01 10 xx
01 11 xx
10 00 xx
10 01 xx
10 10 xx
10 11 xx
11 00 xx
11 01 xx
11 10 xx
11 11 xx

Tag DATA Flag
Index 00

Index 01

Index 10

Index 11



11

Direct Mapped Cache-Examples I

Fully associative cache Replacement Policy Write Policy

 Index number k goes to the kth cache block;
 Assume 4B block size; 6-bit address;

6-bit
Address

2-bit
offset

2-bit
tag

2-bit
index

Address
Tag Index Offset
00 00 xx
00 01 xx
00 10 xx
00 11 xx
01 00 xx
01 01 xx
01 10 xx
01 11 xx
10 00 xx
10 01 xx
10 10 xx
10 11 xx
11 00 xx
11 01 xx
11 10 xx
11 11 xx

Tag DATA Flag
Index 00

Index 01

Index 10

Index 11



12

Direct Mapped Cache-Examples I

Fully associative cache Replacement Policy Write Policy

 Index number k goes to the kth cache block;
 Assume 4B block size; 6-bit address;

6-bit
Address

2-bit
offset

2-bit
tag

2-bit
index

Address
Tag Index Offset
00 00 xx
00 01 xx
00 10 xx
00 11 xx
01 00 xx
01 01 xx
01 10 xx
01 11 xx
10 00 xx
10 01 xx
10 10 xx
10 11 xx
11 00 xx
11 01 xx
11 10 xx
11 11 xx

Tag DATA Flag
Index 00

Index 01

Index 10

Index 11



13

Direct Mapped Cache-Examples I

Fully associative cache Replacement Policy Write Policy

 Different addresses get same block index but different tags.
6-bit

Address

2-bit
offset

2-bit
tag

2-bit
index

Address
Tag Index Offset
00 00 xx
00 01 xx
00 10 xx
00 11 xx
01 00 xx
01 01 xx
01 10 xx
01 11 xx
10 00 xx
10 01 xx
10 10 xx
10 11 xx
11 00 xx
11 01 xx
11 10 xx
11 11 xx

Tag DATA Flag
Index 00

Index 01

Index 10

Index 11



14

Direct Mapped Cache-Examples I

Fully associative cache Replacement Policy Write Policy

 Replacement: Lines with same block index replace each other.
6-bit

Address

2-bit
offset

2-bit
tag

2-bit
index

Address
Tag Index Offset
00 00 xx
00 01 xx
00 10 xx
00 11 xx
01 00 xx
01 01 xx
01 10 xx
01 11 xx
10 00 xx
10 01 xx
10 10 xx
10 11 xx
11 00 xx
11 01 xx
11 10 xx
11 11 xx

Tag DATA Flag
Index 00

Index 01

Index 10

Index 11



15

Direct Mapped Cache: Hardware

Fully associative cache Replacement Policy Write Policy

Much simpler to implement 
than Fully Associative! Just 
check one tag/line, and not 
all lines.



16

Direct Mapped Cache-Examples II

Fully associative cache Replacement Policy Write Policy

 Index number k goes to the kth cache block;
 Assume 8B block size; 7-bit address;

Address
Tag Index Offset
00 00 xxx
00 01 xxx
00 10 xxx
00 11 xxx
01 00 xxx
01 01 xxx
01 10 xxx
01 11 xxx
10 00 xxx
10 01 xxx
10 10 xxx
10 11 xxx
11 00 xxx
11 01 xxx
11 10 xxx
11 11 xxx

Tag DATA Flag
Index 00

Index 01

Index 10

Index 11

Address maps to with tag of
0x37



17

Direct Mapped Cache-Examples II

Fully associative cache Replacement Policy Write Policy

 Index number k goes to the kth cache block;
 Assume 8B block size; 7-bit address;

Address
Tag Index Offset
00 00 xxx
00 01 xxx
00 10 xxx
00 11 xxx
01 00 xxx
01 01 xxx
01 10 xxx
01 11 xxx
10 00 xxx
10 01 xxx
10 10 xxx
10 11 xxx
11 00 xxx
11 01 xxx
11 10 xxx
11 11 xxx

Tag DATA Flag

01

Index 00

Index 01

Index 10

Index 11

Address maps to with tag of
0x37



18

Direct Mapped Cache-Examples II

Fully associative cache Replacement Policy Write Policy

 Index number k goes to the kth cache block;
 Assume 8B block size; 7-bit address;

Address
Tag Index Offset
00 00 xxx
00 01 xxx
00 10 xxx
00 11 xxx
01 00 xxx
01 01 xxx
01 10 xxx
01 11 xxx
10 00 xxx
10 01 xxx
10 10 xxx
10 11 xxx
11 00 xxx
11 01 xxx
11 10 xxx
11 11 xxx

Tag DATA Flag

01

Index 00

Index 01

Index 10

Index 11

Address maps to with tag of
0x37
0x7F



19

Direct Mapped Cache-Examples II

Fully associative cache Replacement Policy Write Policy

 Index number k goes to the kth cache block;
 Assume 8B block size; 7-bit address;

Address
Tag Index Offset
00 00 xxx
00 01 xxx
00 10 xxx
00 11 xxx
01 00 xxx
01 01 xxx
01 10 xxx
01 11 xxx
10 00 xxx
10 01 xxx
10 10 xxx
10 11 xxx
11 00 xxx
11 01 xxx
11 10 xxx
11 11 xxx

Tag DATA Flag

01
11

Index 00

Index 01

Index 10

Index 11

Address maps to with tag of
0x37
0x7F



20

Terminology for Direct Mapped Cache

Fully associative cache Replacement Policy Write Policy

Tag DATA Flag

01
11

Index 00

Index 01

Index 10

Index 11

• Cache capacity/size: total size of the cache (C)
• Cache block size: CB → decides the number of offset bits (o)

2o = CB

• Number of cache blocks (#cache block, N)
N * CB = C

• Bit width of memory address (w): 6-bit in our examples
• Bit width of Index (i): log2(#cache blocks, N)
• Bit width of Tag (t): t = w - b - i = 2 bits
• Hardware implication: comparators? actual storage requirement?



21

Hardware Implementation

Fully associative cache Replacement Policy Write Policy

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30   . . .                 13 12  11    . . .    4  3  2  1  0 Byte offset

20

20Tag

Hit

2 for word offset

Data

32

4 for byte offset and 
16-to-1 multiplexer



22

Direct Mapped Cache-Working Examples

Fully associative cache Replacement Policy Write Policy

Tag DATA valid
0
0
0
0

Index 00

Index 01

Index 10

Index 11

• Suppose 12-bit address, 8B cache 
blocks, 4 cache blocks

• w = 12-bit width; o = 3-bit width;
• i = 2-bit width; t = 12 - 3 - 2 = 7 bit width
• 1. Load byte @0x43F

• 0100 0011 1111



23

Direct Mapped Cache-Working Examples

Fully associative cache Replacement Policy Write Policy

Tag DATA valid
0
0
0
0

Index 00

Index 01

Index 10

Index 11

• Suppose 12-bit address, 8B cache 
blocks, 4 cache blocks

• w = 12-bit width; o = 3-bit width;
• i = 2-bit width; t = 12 - 3 - 2 = 7 bit width
• 1. Load byte @0x43F

• 0100 0011 1111

7-bit
tag

2-bit
index

3-bit
offset



24

Direct Mapped Cache-Working Examples

Fully associative cache Replacement Policy Write Policy

Tag DATA valid
0
0
0

0x21 s o m e da t a 1

Index 00

Index 01

Index 10

Index 11

• Suppose 12-bit address, 8B cache 
blocks, 4 cache blocks

• w = 12-bit width; o = 3-bit width;
• i = 2-bit width; t = 12 - 3 - 2 = 7 bit width
• 1. Load byte @0x43F

• 0100 0011 1111

7-bit
tag

2-bit
index

3-bit
offset



25

Direct Mapped Cache-Working Examples

Fully associative cache Replacement Policy Write Policy

Tag DATA valid
0
0

0x11 s o m e da t a 1
0x21 s o m e da t a 1

Index 00

Index 01

Index 10

Index 11

• Suppose 12-bit address, 8B cache 
blocks, 4 cache blocks

• w = 12-bit width; o = 3-bit width;
• i = 2-bit width; t = 12 - 3 - 2 = 7 bit width
• 1. Load byte @0x43F
• 2. Load byte @0x234

• 0010 0011 0100

7-bit
tag

2-bit
index

3-bit
offset



26

Direct Mapped Cache-Working Examples

Fully associative cache Replacement Policy Write Policy

Tag DATA valid
0x01 s o m e da t a 1

0
0x11 s o m e da t a 1
0x21 s o m e da t a 1

Index 00

Index 01

Index 10

Index 11

• Suppose 12-bit address, 8B cache 
blocks, 4 cache blocks

• w = 12-bit width; o = 3-bit width;
• i = 2-bit width; t = 12 - 3 - 2 = 7 bit width
• 1. Load byte @0x43F
• 2. Load byte @0x234
• 3. Load halfword @0x022

• 0000 0010 0010

7-bit
tag

2-bit
index

3-bit
offset



27

Direct Mapped Cache-Working Examples

Fully associative cache Replacement Policy Write Policy

Tag DATA valid
0x01 s o m e da t a 1

0
0x11 s o m e da t a 1
0x21 s o m e da t a 1

Index 00

Index 01

Index 10

Index 11

• Suppose 12-bit address, 8B cache 
blocks, 4 cache blocks

• w = 12-bit width; o = 3-bit width;
• i = 2-bit width; t = 12 - 3 - 2 = 7 bit width
• 1. Load byte @0x43F
• 2. Load byte @0x234
• 3. Load halfword @0x022
• 4. Load word @0x43C

• 0100 0011 1100

7-bit
tag

2-bit
index

3-bit
offset

Cache 
HIT!!!



28

Direct Mapped Cache-Working Examples

Fully associative cache Replacement Policy Write Policy

Tag DATA valid
0x01 s o m e da t a 1
0x7A s o m e da t a 1
0x11 s o m e da t a 1
0x21 s o m e da t a 1

Index 00

Index 01

Index 10

Index 11

• Suppose 12-bit address, 8B cache 
blocks, 4 cache blocks

• w = 12-bit width; o = 3-bit width;

• i = 2-bit width; t = 12 - 3 - 2 = 7 bit width

• 1. Load byte @0x43F

• 2. Load byte @0x234

• 3. Load halfword @0x022

• 4. Load word @0x43C

• 5. Load byte @0xF4D
• 1111 0100 1101

7-bit
tag

2-bit
index

3-bit
offset



29

Do We still Need LRU?

Fully associative cache Replacement Policy Write Policy

• Suppose 12-bit address, 8B cache 
blocks, 4 cache blocks

• w = 12-bit width; o = 3-bit width;
• i = 2-bit width; t = 12 - 3 - 2 = 7 bit width
• 1. Load byte @0x43F
• 2. Load byte @0x234
• 3. Load halfword @0x022
• 4. Load word @0x43C
• 5. Load byte @0xF4D
• 6. Load word @0x120

Cache 
MISS!!!

Tag DATA valid
0x01 s o m e da t a 1
0x7A s o m e da t a 1
0x11 s o m e da t a 1
0x21 s o m e da t a 1

Index 00

Index 01

Index 10

Index 11

No other choice but to replace 
00-indexed cache block

0001 0010 0000



30

No Replacement Policy Required!!!

Fully associative cache Replacement Policy Write Policy

• Suppose 12-bit address, 8B cache 
blocks, 4 cache blocks

• w = 12-bit width; o = 3-bit width;
• i = 2-bit width; t = 12 - 3 - 2 = 7 bit width
• 1. Load byte @0x43F
• 2. Load byte @0x234
• 3. Load halfword @0x022
• 4. Load word @0x43C
• 5. Load byte @0xF4D
• 6. Load word @0x120

Cache 
MISS!!!

Tag DATA valid
0x09 s o m e da t a 1
0x7A s o m e da t a 1
0x11 s o m e da t a 1
0x21 s o m e da t a 1

Index 00

Index 01

Index 10

Index 11

0001 0010 0000

Victim 
evicted



31

What about Write Policy?

Fully associative cache Replacement Policy Write Policy

• 1. Load byte @0x43F
• 2. Load byte @0x234
• 3. Load halfword @0x022
• 4. Load word @0x43C
• 5. Load byte @0xF4D
• 6. Load word @0x120
• 7. Store byte @0xF48,0x0

• 1111 0100 1000

• Write-through vs. write-back

Cache 
HIT!!!

Tag DATA valid
0x09 s o m e da t a 1
0x7A s o m e da t a 1
0x11 s o m e da t a 1
0x21 s o m e da t a 1

Index 00

Index 01

Index 10

Index 11

7-bit
tag

2-bit
index

3-bit
offset



32

What about Write Policy?

Fully associative cache Replacement Policy Write Policy

• 7. Store byte @0xF48,0x0
• 1111 0100 1000

• Write-back
• Update the cache block and set dirty bit;

• Wait until it is replaced by another cache block;

Tag DATA valid dirty
0x09 so medata 1 0
0x7A so medat0 1 1
0x11 so medata 1 0
0x21 so medata 1 0

Index 00

Index 01

Index 10

Index 11

7-bit
tag

2-bit
index

3-bit
offset

Cache 
HIT!!!



33

What about Write Policy?

Fully associative cache Replacement Policy Write Policy

• 7. Store byte @0xF48,0x0
• 1111 0100 1000

• Write-back
• Update the cache block and set dirty bit; 
• Again, do not need LRU or replacement policy;
• Wait until it is replaced by another cache block;

• Write-through
• Write both the cache block and memory, do not need dirty bit;
• Write buffer stops CPU from stalling if memory cannot keep up
• Write buffer may have multiple entries to absorb bursts of writes

Tag DATA valid
0x09 so medata 1
0x7A so medat0 1
0x11 so medata 1
0x21 so medata 1

Index 00

Index 01

Index 10

Index 11

7-bit
tag

2-bit
index

3-bit
offset

Cache 
HIT!!!



34

What about Write Policy?

Fully associative cache Replacement Policy Write Policy

• 7. Store byte @0x300,0x0
• 0011 0000 0000

• Write-allocate & Write-back
• Load the cache block, update the cache block and set dirty bit; 
• Again, do not need LRU or replacement policy;
• Wait until it is replaced by another cache block;

Tag DATA valid dirty
0x18 so medat0 1 1
0x7A so medata 1 0
0x11 so medata 1 0
0x21 so medata 1 0

Index 00

Index 01

Index 10

Index 11

7-bit
tag

2-bit
index

3-bit
offset

Cache 
MISS!!!



35

What about Write Policy?

Fully associative cache Replacement Policy Write Policy

• 7. Store byte @0x300,0x0
• 0011 0000 0000

• Write-allocate & Write-back
• Load the cache block, update the cache block and set dirty bit; 
• Again, do not need LRU or replacement policy;
• Wait until it is replaced by another cache block;

• Write-allocate & Write-through
• Load the cache block, update the cache block and memory (next-level); 
• Do not need LRU or replacement policy or dirty bit;

Tag DATA valid
0x18 so medat0 1
0x7A so medata 1
0x11 so medata 1
0x21 so medata 1

Index 00

Index 01

Index 10

Index 11

7-bit
tag

2-bit
index

3-bit
offset

Cache 
MISS!!!



36

What about Write Policy?

Fully associative cache Replacement Policy Write Policy

• 7. Store byte @0x300,0x0
• 0011 0000 0000

• Non-write-allocate
• Directly update the (next-level) memory; 

Tag DATA valid
0x09 so medata 1
0x7A so medata 1
0x11 so medata 1
0x21 so medata 1

Index 00

Index 01

Index 10

Index 11

7-bit
tag

2-bit
index

3-bit
offset

Cache 
MISS!!!



37

Direct Mapped Cache-Working Example II

Fully associative cache Replacement Policy Write Policy

Tag DATA 
xxxx xxx0

• Worst case reference case with a 4B cache blocks; 

• 4 cache blocks with index i = 2-bit width; 

• t = 12 - 2 - 2 = 8 bit width;

• Load the 0th element and the 4th element of an int array altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

8-bit
tag

2-bit
index

2-bit
offset

Address of the 0th element

Cache 
MISS!!!



38

Understanding Cache Misses: 3Cs

Fully associative cache Replacement Policy Write Policy

• Compulsory (cold start or process migration, 1st reference):
• First access to block impossible to avoid; small effect for long running programs
• Solution: increase block size (increases miss penalty; very large blocks could 

increase miss rate)

• Capacity:
• Cache cannot contain all blocks accessed by the program
• Solution: increase cache size (may increase access time)

• Conflict (Collision):
• Multiple memory locations mapped to the same cache location, conflict even 

when the cache has not reached full capacity.
• Solution 1: increase cache size
• Solution 2: increase associativity (may increase access time)



39

Understanding Cache Misses: 3Cs

Fully associative cache Replacement Policy Write Policy

• Compulsory (cold start or process migration, 1st reference):

• First access to block impossible to avoid; small effect for long running programs

• Solution: increase block size (increases miss penalty; very large blocks could increase 
miss rate)

• Capacity (last lecture, in FA cache, we have to evict victim when cache is full)

• Cache cannot contain all blocks accessed by the program

• Solution: increase cache size (may increase access time)

• Conflict (Collision):
• Multiple memory locations mapped to the same cache location, conflict even when the 

cache has not reached full capacity.

• Solution 1: increase cache size

• Solution 2: increase associativity (may increase access time)



40

Compulsory Miss

Fully associative cache Replacement Policy Write Policy

Tag DATA 
xxxx xxx0 a[0]

• Worst case reference case with a 4B cache blocks; 

• 4 cache blocks with index i = 2-bit width; 

• t = 12 - 2 - 2 = 8 bit width;

• Load the 0th element and the 4th element of an int array altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

8-bit
tag

2-bit
index

2-bit
offset

Address of the 0th element

Cache 
MISS!!!



41

Working Example II (Cont’d)

Fully associative cache Replacement Policy Write Policy

• Worst case reference case with a 4B cache blocks; 

• 4 cache blocks with index i = 2-bit width; 

• t = 12 - 2 - 2 = 8 bit width;

• Load the 0th element and the 4th element of an int array altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

• xxxx xxx1 0000

8-bit
tag

2-bit
index

2-bit
offset

Address of the 4th element

Cache 
MISS!!!

Address of the 0th element

Tag DATA 
xxxx xxx0 a[0]



42

Working Example II (Cont’d)

Fully associative cache Replacement Policy Write Policy

• Worst case reference case with a 4B cache blocks; 

• 4 cache blocks with index i = 2-bit width; 

• t = 12 - 2 - 2 = 8 bit width;

• Load the 0th element and the 4th element of an int array altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

• xxxx xxx1 0000

8-bit
tag

2-bit
index

2-bit
offset

Address of the 4th element

Cache 
MISS!!!

Address of the 0th element

Tag DATA 
xxxx xxx1 a[4]



43

Working Example II (Cont’d)

Fully associative cache Replacement Policy Write Policy

• Worst case reference case with a 4B cache blocks; 

• 4 cache blocks with index i = 2-bit width; 

• t = 12 - 2 - 2 = 8 bit width;

• Load the 0th element and the 4th element of an int array altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

• xxxx xxx1 0000

• xxxx xxx0 0000

8-bit
tag

2-bit
index

2-bit
offset

Address of the 4th element

Cache 
MISS!!!

Address of the 0th element

Tag DATA 
xxxx xxx1 a[4]

Address of the 0th element



44

Working Example II (Cont’d)

Fully associative cache Replacement Policy Write Policy

• Worst case reference case with a 4B cache blocks; 

• 4 cache blocks with index i = 2-bit width; 

• t = 12 - 2 - 2 = 8 bit width;

• Load the 0th element and the 4th element of an int array altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

• xxxx xxx1 0000

• xxxx xxx0 0000

8-bit
tag

2-bit
index

2-bit
offset

Address of the 4th element

Cache 
MISS!!!

Address of the 0th element

Tag DATA 
xxxx xxx0 a[0]

Address of the 0th element



45

Working Example II (Cont’d)

Fully associative cache Replacement Policy Write Policy

• Worst case reference case with a 4B cache blocks; 

• 4 cache blocks with index i = 2-bit width; 

• t = 12 - 2 - 2 = 8 bit width;

• Load the 0th element and the 4th element of an int array altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

• xxxx xxx1 0000

• xxxx xxx0 0000

• xxxx xxx1 0000

8-bit
tag

2-bit
index

2-bit
offset

Address of the 4th element

Cache 
MISS!!!

Address of the 0th element

Tag DATA 
xxxx xxx0 a[0]

Address of the 0th element

Address of the 4th element



46

Working Example II (Cont’d)

Fully associative cache Replacement Policy Write Policy

• Worst case reference case with a 4B cache blocks; 

• 4 cache blocks with index i = 2-bit width; 

• t = 12 - 2 - 2 = 8 bit width;

• Load the 0th element and the 4th element of an int array altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

• xxxx xxx1 0000

• xxxx xxx0 0000

• xxxx xxx1 0000

8-bit
tag

2-bit
index

2-bit
offset

Address of the 4th element

Cache 
MISS!!!

Address of the 0th element

Tag DATA 
xxxx xxx1 a[4]

Address of the 0th element

Address of the 4th element



47

Understanding Cache Misses: 3Cs

Fully associative cache Replacement Policy Write Policy

• Compulsory (cold start or process migration, 1st reference):

• First access to block impossible to avoid; small effect for long running programs

• Solution: increase block size (increases miss penalty; very large blocks could increase 

miss rate)

• Capacity (last lecture, in FA cache, we have to evict victim when cache is full)

• Cache cannot contain all blocks accessed by the program

• Solution: increase cache size (may increase access time)

• Conflict (Collision):
• Multiple memory locations mapped to the same cache location, conflict even when the 

cache has not reached full capacity.

• Solution 1: increase cache size

• Solution 2: increase associativity (may increase access time)

In this class, we will only 
distinguish between 
compulsory and non-
compulsory misses.



48

3Cs: Question

Fully associative cache Replacement Policy Write Policy

• Can Conflict Misses occur on a fully associative cache?



49

Identify 3Cs if You Must

Fully associative cache Replacement Policy Write Policy

● Run an address trace against a set of caches.
○ (thanks Prof. Kubiatowicz for the algorithm).

1. First, consider an infinite-size, fully-associative cache. For every miss 
that occurs now, consider it a compulsory miss.

2. Next, consider a finite-sized cache (of the size you want to examine) 
with full-associativity. Every miss that is not in #1 is a capacity miss.

3. Finally, consider a finite-sized cache with finite-associativity. All of the 
remaining misses that are not #1 or #2 are conflict misses.

– Fully associative, ... ..., 16-way, 8-way, 4-way, 2-way, 1-way



50

Summary on FA/DM caches

Fully associative cache Replacement Policy Write Policy

● Direct Mapped (DM)
○ Placement policy: Each 

memory address is associated 
with exactly one possible line in 
the cache.

○ Simpler hardware: check one 
line

○ Write policies: write-back, write-
through

○ No replacement policy, 
because we know which line to 
replace

○ Has conflict misses

● Fully Associative (FA)
○ Placement policy: Data at any 

memory address can be 
associated with any cache 
block

○ Expensive hardware: check all 
blocks

○ Write policies: write-back, 
write-through

○ Must decide replacement 
policy (LRU, MRU, FIFO, etc.)


