,E ERERZESRARFER

h‘ w:i:f' School of Information Science and Technology

CS 110
Computer Architecture
Cache lll Direct-mapped & Set-
Associative Cache

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/4/22

Administratives

Mid-term Il tentatively May 15th; you can bring 2-page A4-
sized double-sided cheat sheet, handwritten only!

Project 2.1 released, start early, ddl May 5th!!!
HWS5 released, ddl May. 7th.

Lab 9 checking this week. Lab 10 will be released and checked
next week (longan nano RISC-V board).

« CS110-only students need the board for lab 10 & 11 only;
« CS110P project 4 will use this board to develop a game;

 Keep them really well, because you have to return the board
after lab/project checking;

Discussion this week on cache

Discussion Apr. 28th on midterm Il review
2

Administratives

« Special arrangement for Lab sessions during Labour Day Holiday

* Apr. 27th, 18:00-19:40: Thursday lab sessions (Lab 7/8/9) to
check Lab 10; (SIST 1B-106, 1B-108, SIST 1B-110)

 Apr. 28th, 18:00-19:40: Monday lab sessions (Lab 1/2) to
check Lab 10;

* Apr. 29th, 19:50-21:30: Tuesday lab sessions (Lab 3/4/5/6) to
check Lab 10;

« May 6th/8th/12th: Tuesday/Thursday/Monday lab sessions to
check Lab 11, respectively, which is to prepare for project 4,
Longan nano RISC-V development. The circuit boards will be
distributed during the lab sessions.

Replacement Policy

Cache Design: Placement Policies

Fully Direct
Associative Mapped
Cache Set-Associative Cache
Cache
Put a new line
Put a new line (Later this lecture) In one specific
anywhere place

(This lecture)

Fully associative caches

. L hardware.
need expensive hardware. ess hardware

Memory blocks >> # Cache blocks
We need to carefully place memory blocks into cache blocks

Replacement Policy

Direct Mapped Cache: Hardware

Byte offset

3130 G T il S 21}/

Hit

Comparator

Much simpler to implement
than Fully Associative! Just
check one tag/line, and not
all lines.

Replacement Policy

Direct Mapped Cache

e Placement pOIicy: The data at a Tag VB LRU Dirty DATA
memory address can be stored at

exactly one possible block in the
cache.

o To check for existence in the

cache, we only need to look In

a single location in the cache.

How do we ensure this?

Replacement Policy

Direct Mapped Cache

e Placement pOIicy: The data at a Tag VB LRU Dirty DATA
memory address can be stored at

exactly one possible block in the
cache.

o To check for existence in the

cache, we only need to look In

a single location in the cache.

How do we ensure this?

AL
r ~N
o Add extra field to indicate
which exact block to check.
g A
N "
t-bit I-bit o-bit
tag index offset

index to select
block in cache

Direct Mapped Cache-Examples |

Replacement Policy

e Index number k goes to the kth cache block;
e Assume 4B block size; 6-bit address;

N

~

v’

2-bit
Index

Address
Tag Index Offset r
00 00 XX
00 01 XX G YJ\
00 XX
00 11 XX 2-bit
01 00 XX tag
01 01 XX
01 XX
01 11 XX
10 00 XX —
10 01 XX
10 XX
10 11 XX
11 00 XX
11 01 XX
11 XX
11 11 XX

2-bit
offset

Index 00
Index 01

Index 11

Direct Mapped Cache-Examples |

e Index number k goes to the kth cache block;

Replacement Policy

e Assume 4B block size; 6-bit address:;

N

~

2-bit
tag

\Y,_/\»

DATA

v’

2-bit
Index

Flag

Address
Tag Index Offset r
00 00 XX
00 01 XX G
00 XX
00 11 XX
01 00 XX
01 01 XX
01 XX Tag
01 11 XX
10 00 XX
10 01 XX
10 x |
10 11 XX
11 00 XX
11 01 XX
11 XX
11 11 XX

2-bit
offset

Index 00
Index 01

Index 11

Direct Mapped Cache-Examples |

e Index number k goes to the kth cache block;

Replacement Policy

e Assume 4B block size; 6-bit address:;

N

~

2-bit
tag

\Y”)\

DATA

v’

2-bit
Index

Flag

Address
Tag Index Offset r
00 00 XX
00 01 XX G
00 XX
00 11 XX
01 00 XX
01 01 XX
01 XX Tag
01 11 XX
10 00 XX
10 01 XX
10 XX
10 11 XX
11 00 XX
11 01 XX
11 XX
11 11 XX

2-bit
offset

Index 00
Index 01

Index 11

10

Direct Mapped Cache-Examples |

e Index number k goes to the kth cache block;

Replacement Policy

e Assume 4B block size; 6-bit address:;

N

~

2-bit
tag

\Y”)\

DATA

v’

2-bit
Index

Flag

Address
Tag Index Offset r
00 00 XX
00 01 XX G
00 XX
00 11 XX
01 00 XX
01 01 XX
01 XX Tag
01 11 XX
10 00 XX
10 01 XX
10 XX
10 11 XX
11 00 XX
11 01 XX
11 XX
11 11 XX

2-bit
offset

Index 00
Index 01

Index 11

11

Direct Mapped Cache-Examples |

e Index number k goes to the kth cache block;

Replacement Policy

e Assume 4B block size; 6-bit address:;

N

~

2-bit
tag

DATA

v’

2-bit
Index

Flag

Address
Tag Index Offset r
00 00 XX
00 01 XX G
00 XX
00 11 XX
01 00 XX
01 01 XX
01 XX
01 11 XX
10 00 XX
10 01 XX
10 x | —
10 11 XX
11 00 XX
11 01 XX
11 XX
11 11 XX

2-bit
offset

Index 00
Index 01

Index 11

12

Replacement Policy

Direct Mapped Cache-Examples |

e Different addresses get same block index but different tags.

Address A
Tag Index Offset e ~N
00 00 XX
00 01 XX
00 XX g W\ ~ LN W
00 11 XX i i .
01 00 - 2-bit 2-bit 2-bit
tag iIndex offset
01 01 XX
01 XX DATA Flag
01 11 XX
10 00 Index 00
XX
10 01 - Index 01
10 XX
10 11 XX Index 11
11 00 XX
11 01 XX
11 XX .
11 11 XX

Replacement Policy

Direct Mapped Cache-Examples |

e Replacement: Lines with same block index replace each other.

Address A
Tag Index Offset e ™~
00 00 XX
00 01 XX
00 XX g W\ ~ LN W
00 11 XX i i .
01 00 - 2-bit 2-bit 2-bit
tag iIndex offset
01 01 XX
a = DATA Flag
01 11 XX
10 00 Index 00
XX
10 01 - Index 01
10 XX
10 11 XX Index 11
11 00 XX
11 01 XX
11 XX y
11 11 XX

Replacement Policy

Direct Mapped Cache: Hardware

Byte offset

3130 G T il S 21}/

Hit

Comparator

Much simpler to implement
than Fully Associative! Just
check one tag/line, and not
all lines.

15

Replacement Policy

Direct Mapped Cache-Examples |l

e Index number k goes to the kth cache block;
e Assume 8B block size; 7-bit address;

Address

Tag | Index | Offset Address mapsto with tag of

00 00 XXX

00 01 XXX Ox37

00 XXX

00 11 XXX

01 00 XXX

01 01 XXX

01 XXX

01 11 XXX

19 o0 oo Tag DATA Flag

10 01 XXX

10 5 Index 00
10 11 XXX Index 01
11 00 XXX

UL 01 58 Index 11
11 XXX

11 11 XXX 0

Replacement Policy

Direct Mapped Cache-Examples |l

e Index number k goes to the kth cache block;
e Assume 8B block size; 7-bit address;

Address

Tag | Index | Offset Address mapsto with tag of

00 00 XXX

00 01 XXX Ox37/

00 XXX

00 11 XXX

01 00 XXX

01 01 XXX

01 XXX

01 11 XXX

10 00

o = o Tag DATA Flag

XXX

10 5 Index 00
10 11 XXX Index 01
11 00 XXX 01

11 01 XXX Index 11
11 XXX .
11 11 XXX

Replacement Policy

Direct Mapped Cache-Examples |l

e Index number k goes to the kth cache block;
e Assume 8B block size; 7-bit address;

Address

Tag | Index | Offset Address mapsto with tag of

00 00 XXX

00 01 XXX Ox37

00 XXX

o0 > . Ox7F

01 00 XXX

01 01 XXX

01 XXX

01 11 XXX

1 00

12 - = Tag DATA Flag

10 - Index 00
10 11 e Index 01
11 00 XXX 01

11 01 XXX Index 11
11 XXX 18
11 11 XXX

Replacement Policy

Direct Mapped Cache-Examples |l

e Index number k goes to the kth cache block;
e Assume 8B block size; 7-bit address;

Address

Tag | Index | Offset Address mapsto with tag of

00 00 XXX

00 01 XXX Ox37

00 XXX

o - — OxX7F

01 00 XXX

01 01 XXX

01 XXX

01 11 XXX

1

12 g? XXX Tag DATA Flag

XXX

10 - Index 00
10 11 e Index 01
11 00 XXX 01

11 01 XXX 11 Index 11
11 XXX 19
11 11 XXX

Replacement Policy

Terminology for Direct Mapped Cache

« (Cache capacity/size: total size of the cache (C)
« (Cache block size: Cg — decides the number of offset bits (0)
20 = Cg

 Number of cache blocks (#cache block, N)

N*Cg=C
« Bit width of memory address (w): 6-bit in our examples
« Bit width of Index (i): log,(#cache blocks, N)
 Bitwidthof Tag (t):t=w-b-i1=2 bits
« Hardware implication: comparators? actual storage requirement?

Tag DATA Flag

Index 00
Index 01

01
11 Index 11

Replacement Policy

Hardware Implementation

: Byte offset
Hit 3130 ... 32U ... 4321/0 Data
| «
Tag 50 3 . 2 for word offset
Index) 4 for byte offset and
16-to-1 multiplexer
IndexValid Tag < Data
(0)

T~ 20

32

Replacement Policy

Direct Mapped Cache-Working Examples

« Suppose 12-bit address, 8B cache RREL DATA valid
blocks, 4 cache blocks 0

« w = 12-bit width; o = 3-bit width;
e |=2-bitwidth;t=12-3 -2 =7 bit width
1. Load byte @0x43F

0100 0011 1111

0
0
0

Index 00

Index 01

Index 11

22

Replacement Policy

Direct Mapped Cache-Working Examples

Suppose 12-bit address, 8B cache [JREE DATA valid
blocks, 4 cache blocks 0
w = 12-bit width: o = 3-bit width;

* i=2-bitwidth;t=12-3 -2 =7 bit width
1. Load byte @0x43F

0100 0011 1111

Y
7-bit 2-bit 3-bit
tag index offset

0
0
0

Index 00

Index 01

Index 11

23

Replacement Policy

Direct Mapped Cache-Working Examples

Suppose 12-bit address, 8B cache [JREE DATA valid
blocks, 4 cache blocks @ |Index00
e w = 12-bit width; o = 3-bit width; Index 01
* i=2-bitwidth;t=12-3-2=7bitwidth | 5,54
1. Load byte @0x43F

0100 0011 1111

Y
7-bit 2-bit 3-bit
tag index offset

0
0
1 |[Index11

24

Replacement Policy

Direct Mapped Cache-Working Examples

Suppose 12-bit address, 8B cache [JREE DATA valid
blocks, 4 cache blocks 0

w = 12-bit width; o = 3-bit width; :
| o | o Ox11 |s|ojm|e|dla|t|a] 1
| = 2-bit width; t =12 -3 - 2 = 7 bit width 0x21 1
1. Load byte @@x43F

2. Load byte @0@x234

0010 001 100

Y
7-bit 2-bit 3-bit
tag index offset

Index 00

Index 01

Index 11

25

Replacement Policy

Direct Mapped Cache-Working Examples

« Suppose 12-bit address, 8B cache RREL DATA valid

blocks, 4 cache blocks 0x01 |slojme|datla] 1
« w = 12-bit width; o = 3-bit width;
* i=2-bitwidth;t=12-3-2=7Dbitwidth [5 54
e 1.
. 2.
- 3.

0
Ox11 |s|oimle/dlaltla] 1
1

_oad byte @@x43F
_oad byte @@x234

_oad halfword @@x022

0000 0010 0010

Y
7-bit 2-bit 3-bit
tag index offset

Index 00

Index 01

Index 11

26

Replacement Policy

Direct Mapped Cache-Working Examples

« Suppose 12-bit address, 8B cache RREL DATA valid
blocks, 4 cache blocks O0x01 [s|ome|dlalt|a|] 1 |/ndex00

 w = 12-bit width; o = 3-bit width; 0 | Index01
, L o 0x11 |s|ome|djaltlal] 1
e [=2-bitwidth;t=12-3 -2 =7 bit width 0x21)

Index 11

1. Load byte @0x43F

« 2. Load byte @0x234

« 3. Load halfword @@x022

4. lLoad word @@x43C Cache
0100 0011 1100 HITI

Y
7-bit 2-bit 3-bit
tag index offset

Replacement Policy

Direct Mapped Cache-Working Examples

« Suppose 12-bit address, 8B cache HHEE DATA 2:Ule
blocks, 4 cache blocks 0x@1 |sjomeldjajtia] 1 |ndexto
Ox7A |sjomeldla/tlal] 1 |Indexo01
* W = 12-bit width; o = 3-bit width; ox11 lslolmleldlaltlal 1
+ i =2-bit width;t=12-3-2=7bitwidth [2*21 [slome/datiaj 1 findexs

1. Load byte @@x43F
« 2. Load byte @0x234
3. Load halfword @@x022

4. Load word @@x43C

« 5. Load byte @@xF4D

1111 0100 1&
7-bit m 3-bit

tag index offset

Replacement Policy

Do We still Need LRU?

Suppose 12-bit address, 8B cache [JREE DATA valid
blocks, 4 cache blocks O0x01 [s|ome|dlalt|a|] 1 |/ndex00
w = 12-bit width; o = 3-bit width; i FeielElHa] L
_ L o 0x11 |s|jomedajtial] 1

| = 2-bit width:t =12 - 3 - 2 = 7 bit width 0x21 lslolmleldlaltlal 1 | index 11

. Load byte @@x43F

. Load byte @0@x234

. Load halfword @@x022
. Load word @0@x43C Cache
. Load byte @@xF4D MISS!!
. Load word @0@x120

0001 0010 0000

S O A WO N =

No other choice but to replace
00-indexed cache block

Replacement Policy

No Replacement Policy Required!!!

Victim
Suppose 12-bit address, 8B cache [JREE DATA YEllllcVicted
blocks, 4 cache blocks 0x09 |[s|ome|dlatjal] 1 |!ndex00
w = 12-bit width; o = 3-bit width; i FeielElHa] L
, L o 0x11 |s|ome|djaltlal] 1
| = 2-bit width:t =12 - 3 - 2 = 7 bit width 0x21 lslolmleldlaltlal 1 | index 11

. Load byte @@x43F

. Load byte @0@x234

. Load halfword @@x022
. Load word @0@x43C Cache
. Load byte @@xF4D MISS!!
. Load word @0@x120

0001 0010 0000

S O A WO N =

30

N O O A WD =

Replacement Policy

What about Write Policy?

. Load byte @@x43F Tag DATA valid

. Load byte @0x234 0x09 |sjomeldjatial 1
Ox7A |sjojmeldla/tial 1

. Load halfword @@x022 ox11 lslomleldaltlal 1

. Load word @0@x43C 0x21 |s|ojmle/djat|la] 1

. Load byte @@xF4D
. Load word @@x120
. Store byte @0QxF48, 0x0

1111 0100 1000 Cache
7-bit ;fjt?fbit HIT!!

tag index offset

Write-through vs. write-back

Index 00

Index 01

Index 11

31

Replacement Policy

What about Write Policy?

« 7. Store byte @0xF438,0x0 Tag DATA valid dirty
. 1111 0100 1000 0x0@9 |s|jojmedatial 1 0
2.5t o-bit 2-bit Cache Ox7A |siojmedat|o] 1 1
tag index offset HITI | 0x11 |sjojmedatia] 1 0
0x21 |sjojmleldatia] 1 0

 Write-back

Update the cache block and set dirty bit;

Wait until it is replaced by another cache block;

Index 00

Index 01

Index 11

32

7. Store byte @0xF438, 0x0 Tag DATA valid
1111 0100 1000 Cache 0x09 |s|ojmjedatial] 1
7ot 2ht o HIT!!! Ox7A |siojmiedat|o] 1
tag index offset 0x11 |sjomedfaltia] 1
Write-back 0x21 |siojmedatial 1

Replacement Policy

What about Write Policy?

* Update the cache block and set dirty bit;

* Again, do not need LRU or replacement policy;

« Wait until it is replaced by another cache block;

Write-through

* Write both the cache block and memory, do not need dirty bit;

« Write buffer stops CPU from stalling if memory cannot keep up

« Write buffer may have multiple entries to absorb bursts of writes

Index 00

Index 01

Index 11

7. Store byte @0x300, 0x0 Tag DATA valid dirty
0011 0000 0000 Cache 0x18 |s|loimedalt|d| 1 1
— —

X%t 2% o MISSIII = 2x7Asomedatia) 1 ©
tag index offset 0x11 [siomedaftia| 1 0
Write-allocate & Write-back 0x21|sjojmedaltia) 1 0

Replacement Policy

What about Write Policy?

» Load the cache block, update the cache block and set dirty bit;

* Again, do not need LRU or replacement policy;

« Wait until it is replaced by another cache block;

Index 00

Index 01

Index 11

34

Replacement Policy

What about Write Policy?

7. Store byte @0x300, 0x0 Tag DATA valid

0011 0000 0000 CaChe Ox18 [sloimleldlaltldl 1 Index 00
7_in,[m?bit MISSII! Ox7A siomedatial 1 Index 01
tag index offset 0x11 [siomedaftia| 1

Write-allocate & Write-back e 0 I index 11

» Load the cache block, update the cache block and set dirty bit;

* Again, do not need LRU or replacement policy;

« Wait until it is replaced by another cache block;

Write-allocate & Write-through

« Load the cache block, update the cache block and memory (next-level);

* Do not need LRU or replacement policy or dirty bit;

35

7. Store byte @0x300, 0x0 Tag DATA valid
011 0000 0000 Cache 0x09 |slomedatial 1
— Y

7-bit szt Ibit— MISSI - 9x/Ajsomedata) 1

tag index offset 0x11 |sjojmedatial 1

. 0x21 |siojmleldiatial 1
Non-write-allocate

Replacement Policy

What about Write Policy?

* Directly update the (next-level) memory;

Index 00

Index 01

Index 11

36

Replacement Policy

Direct Mapped Cache-Working Example |l

 Worst case reference case with a 4B cache blocks;

4 cache blocks with index | = 2-bit width;

¢« t=12-2-2 =8 bit width;

* Load the element and the element of an 1nt array altenately;

« (Cold start with an empty cache;

xxxx xxx® A0O0 Address of the Oth element

8- blt 2-bit L; bit
tag index offset
Tag DATA
Cache XXXX XXX0O

MISS!!

Replacement Policy

Understanding Cache Misses: 3Cs

Compulsory (cold start or process migration, 1st reference):
» First access to block impossible to avoid; small effect for long running programs

« Solution: increase block size (increases miss penalty; very large blocks could
iIncrease miss rate)

38

Replacement Policy

Understanding Cache Misses: 3Cs

Capacity (last lecture, in FA cache, we have to evict victim when cache is full)
Cache cannot contain all blocks accessed by the program

Solution: increase cache size (may increase access time)

C C

39

Replacement Policy

Compulsory Miss

Worst case reference case with a 4B cache blocks:

4 cache blocks with index 1 = 2-bit width;

t=12-2 -2 =8 bit width;

Load the element and the element of an 1nt array altenately;

Cold start with an empty cache; Tag DATA

XXXX Xxx0 | alo]

xxxx xxx® A0O0 Address of the Oth element

8- blt 2-bit \Z bit

tag index offset

Cache
MISSI!!!

Replacement Policy

Working Example Il (Cont’d)

Worst case reference case with a 4B cache blocks:

4 cache blocks with index 1 = 2-bit width;

t=12-2 -2 =8 bit width;

Load the element and the element of an 1nt array altenately;

Cold start with an empty cache; Tag DATA

XXXX Xxx0 | alo]

XXXX XXXO 0000 Address of the Oth element

e XXXX XXX1 000® Address of the 4th element

\\§ J
— Y'Y
8-bit 2-bit LZ-blt

tag index offset

Cache
MISSI!!!

Replacement Policy

Working Example Il (Cont’d)

Worst case reference case with a 4B cache blocks:

4 cache blocks with index 1 = 2-bit width;

t=12-2 -2 =8 bit width;

Load the element and the element of an 1nt array altenately;

Cold start with an empty cache; Tag DATA

XXXX xXxx1 | al4]

XXXX XXXO 0000 Address of the Oth element

e XXXX XXX1 000® Address of the 4th element

\\§ J
— Y'Y
8-bit 2-bit LZ-blt

tag index offset

Cache
MISSI!!!

Replacement Policy

Working Example Il (Cont’d)

Worst case reference case with a 4B cache blocks:

4 cache blocks with index 1 = 2-bit width;

t=12-2 -2 =8 bit width;

Load the element and the element of an 1nt array altenately;

Cold start with an empty cache; Tag DATA

XXXX XXXO 0000 Address of the Oth element Xxxx xxx1| al4]

e XXXX XXX1 000® Address of the 4th element

. XXXX XXX@ OOOO Address of the Oth element

8- blt 2-bit \Z bit
tag index offset Cache

MISS!!

43

Replacement Policy

Working Example Il (Cont’d)

Worst case reference case with a 4B cache blocks:

4 cache blocks with index 1 = 2-bit width;

t=12-2 -2 =8 bit width;

Load the element and the element of an 1nt array altenately;

Cold start with an empty cache; Tag DATA

XXXX XXXO 0000 Address of the Oth element XXxXX xxx@ | alo]

e XXXX XXX1 000® Address of the 4th element

. XXXX XXX@ OOOO Address of the Oth element

8- blt 2-bit \Z bit
tag index offset Cache

MISS!!

44

Replacement Policy

Working Example Il (Cont’d)

Worst case reference case with a 4B cache blocks:

4 cache blocks with index 1 = 2-bit width;

t=12-2 -2 =8 bit width;

Load the element and the element of an 1nt array altenately;

Cold start with an empty cache; Tag DATA

e XXXX XXXO 0000 Address of the Oth element XXxXX xxx@ | alo]

e XXXX XXX1 000® Address of the 4th element

e XXXX XXXO 0O00® Address of the Oth element

. XXXX XXX1 O0OO@ Address of the 4th element

8-bit 2- blt\Zblt Cache
tag index offset MISS!I!

Replacement Policy

Working Example Il (Cont’d)

Worst case reference case with a 4B cache blocks:

4 cache blocks with index 1 = 2-bit width;

t=12-2 -2 =8 bit width;

Load the element and the element of an 1nt array altenately;

Cold start with an empty cache; Tag DATA

e XXXX XXXO 0000 Address of the Oth element Xxxx xxx1| al4]

e XXXX XXX1 000® Address of the 4th element

e XXXX XXXO 0O00® Address of the Oth element

. XXXX XXX1 O0OO@ Address of the 4th element

8-bit 2- blt\Zblt Cache
tag index offset MISS!I!

Replacement Policy

Understanding Cache Misses: 3Cs

- C
- C
In this class, we will only
distinguish between
_ o compulsory and non-
« Conflict (Collision): compulsory misses.

« Multiple memory locations mapped to the same cache location, conflict even when the
cache has not reached full capacity.

« Solution 1: increase cache size

« Solution 2: increase associativity (may increase access time) .

Replacement Policy

3Cs: Question

Can Conflict Misses occur on a fully associative cache?

48

Replacement Policy

ldentify 3Cs if You Must

o Run an address trace against a set of caches.
o (thanks Prof. Kubiatowicz for the algorithm).

First, consider an infinite-size, fully-associative cache. For every miss
that occurs now, consider it a compulsory miss.

Next, consider a finite-sized cache (of the size you want to examine)
with full-associativity. Every miss that is not in #1 is a capacity miss.

Finally, consider a finite-sized cache with finite-associativity. All of the

remaining misses that are not #1 or #2 are conflict misses.
Fully associative, , 16-way, 8-way, 4-way, 2-way, 1-way

49

Replacement Policy

Summary on FA/DM caches

« Fully Associative (FA) o Direct Mapped (DM)

> Placement policy: Data at any > Placement policy: Each
memory address can be memory address is associated
associated with any cache with exactly one possible line in
block the cache.

- Expensive hardware: check all o Simpler hardware: check one
blocks line

- Write policies: write-back, - Write policies: write-back, write-
write-through through

o Must decide replacement > No replacement policy,
policy (LRU, MRU, FIFO, etc.) because we know which line to

replace

o Has conflict misses

