
CS 110
Computer Architecture

Cache IV Set-Associative Cache
Instructors:

Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-

lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)

ShanghaiTech University

2025/4/24

Administratives

2

• Mid-term II tentatively May 15th 8am-10am; you can bring 2-page
A4-sized double-sided cheat sheet, handwritten only! (Teaching
center 201/301/303);

• Project 2.1 released, start early, ddl May 5th!!!

• Project 2.2 to be released soon. Keep an eye on Piazza/webpage post.

• HW5 released, ddl May. 7th.

• Lab 9 checking this week. Lab 10 is released and will be checked next
week (longan nano RISC-V board). Prepare in advance!

• CS110-only students need the board for lab 10 & 11 only;

• CS110P project 4 will use this board to develop a game;

• Keep them really well, because you have to return the board after
lab/project checking;

• Discussion this week on cache;

• Discussion Apr. 28th on midterm II review

Administratives

3

• Special arrangement for Lab sessions during Labour Day Holiday

• Apr. 27th, 18:00-19:40: Thursday lab sessions (Lab 7/8/9) to
check Lab 10; (SIST 1B-106, 1B-108, SIST 1B-110)

• Apr. 28th, 18:00-19:40: Monday lab sessions (Lab 1/2) to
check Lab 10;

• Apr. 29th, 19:50-21:30: Tuesday lab sessions (Lab 3/4/5/6) to
check Lab 10;

• May 6th/8th/12th: Tuesday/Thursday/Monday lab sessions to
check Lab 11, respectively, which is to prepare for project 4,
Longan nano RISC-V development.

• The circuit boards will be distributed during the lab 10
sessions. Bring your laptop and USB type-C cable.

4

Cache Design: Placement Policies

Set-Associative Cache Cache Metrics &Performance

Fully
Associative

Cache

Put a new line
anywhere

Direct
Mapped
Cache

Put a new line
in one specific

place

Set-Associative
Cache

(This lecture)

Fully associative caches
need expensive hardware. Less hardware.

Memory blocks >> # Cache blocks
We need to carefully place memory blocks into cache blocks

Put a new line in
several specific places

5

Set-Associative (SA) Cache
• Placement policy: The data can only

be stored at one index, but there are
multiple slots/blocks.
• To check for existence in the cache, we

check all cache blocks associated with
the same index.

• Associativity of a cache: The number
of slots assigned to each index/set.

Tag DATA Flag

0

1

Index

Set

Set

Set-Associative Cache Cache Metrics &Performance

6

N-Way Set-Associative Cache
• Associativity of a cache: The number

of slots assigned to each index.
• N-Way Set Associative: groups of N

cache lines are assigned a unique index
• 2-Way Set Associative (see right)

• 4 cache blocks
• Each index is associated with a

set of N = 2 lines
• Two indices: 0 and 1

Tag DATA Flag

0

1

Index

Set-Associative Cache Cache Metrics &Performance

7

Designing N-Way SA Cache
• N-Way Set Associative: groups of N

cache blocks are assigned a unique
index.
1. Which mapping represents a 32B 2-

way SA Cache with 4B cache blocks?
2. Do SA caches have Tags? Indices?

Offsets?
3. Do SA cache blocks need a valid bit?
4. What write policies can SA Caches

support?
5. SA Caches support block replacement

policies. How does LRU work?

Tag DATA Flag

0

1

Index

2

3

0

1

A. B.

Set-Associative Cache Cache Metrics &Performance

8

Designing N-Way SA Cache
• N-Way Set Associative: groups of N

cache blocks are assigned a unique
index.
1. Which mapping represents a 32B 2-

way SA Cache with 4B cache blocks?
2. Do SA caches have Tags? Indices?

Offsets?
3. Do SA cache blocks need a valid bit?
4. What write policies can SA Caches

support?
5. SA Caches support block replacement

policies. How does LRU work?

Tag DATA Flag

0

1

Index

2

3

0

1

A. B.

Set-Associative Cache Cache Metrics &Performance

9

Designing N-Way SA Cache
• N-Way Set Associative: groups of N

cache blocks are assigned a unique
index.
1. Which mapping represents a 32B 2-

way SA Cache with 4B cache blocks?
2. Do SA caches have Tags? Indices?

Offsets?
3. Do SA cache blocks need a valid bit?
4. What write policies can SA Caches

support?
5. SA Caches support block replacement

policies. How does LRU work?

Tag DATA Flag

0

1

Index

2

3

xxxx xxxx xxxx

8-bit
tag

2-bit
index

2-bit
offset

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

10

Designing N-Way SA Cache
• N-Way Set Associative: groups of N

cache blocks are assigned a unique
index.
1. Which mapping represents a 32B 2-

way SA Cache with 4B cache blocks?
2. Do SA caches have Tags? Indices?

Offsets?
3. Do SA cache blocks need a valid bit?
4. What write policies can SA Caches

support?
5. SA Caches support block replacement

policies. How does LRU work?

Tag DATA Flag

0

1

Index

2

3

Yes! All caches need to “warm up”.

Set-Associative Cache Cache Metrics &Performance

11

Designing N-Way SA Cache
• N-Way Set Associative: groups of N

cache blocks are assigned a unique
index.
1. Which mapping represents a 32B 2-

way SA Cache with 4B cache blocks?
2. Do SA caches have Tags? Indices?

Offsets?
3. Do SA cache blocks need a valid bit?
4. What write policies can SA Caches

support?
5. SA Caches support block replacement

policies. How does LRU work?

Tag DATA Flag

0

1

Index

2

3
8-bit
tag

Write-back (needs dirty bit),
write-through

Set-Associative Cache Cache Metrics &Performance

12

Designing N-Way SA Cache
• N-Way Set Associative: groups of N

cache blocks are assigned a unique
index.
1. Which mapping represents a 32B 2-

way SA Cache with 4B cache blocks?
2. Do SA caches have Tags? Indices?

Offsets?
3. Do SA cache blocks need a valid bit?
4. What write policies can SA Caches

support?
5. SA Caches support block replacement

policies. How does LRU work?

Tag DATA Flag

0

1

Index

2

3

8-bit
tag

LRU (and all block replacement policies)
occur within each set of cache blocks.
Above, LRU considers N = 2 blocks.

Set-Associative Cache Cache Metrics &Performance

13

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B
• 0100 0011 1011

Tag DATA Valid Dirty LRU
0 0
0 0
0 0
0 0

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

14

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B
• 0100 0011 1011

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0

0 0
0 0
0 0

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

15

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430
• 0100 0011 0000

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 1
0x086 d a t a 1 0 0

0 0
0 0

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

16

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438
• 0100 0011 1000

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 1
0x086 d a t a 1 0 0

0 0
0 0

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

17

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438
• 0100 0011 1000

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0
0x086 d a t a 1 0 1

0 0
0 0

0

1

Index

8-bit
tag

Cache
HIT!!!

Set-Associative Cache Cache Metrics &Performance

18

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438

• 4. Load byte @0x034
• 0000 0011 0100

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0
0x086 d a t a 1 0 1

0 0
0 0

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

19

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438

• 4. Load byte @0x034
• 0000 0011 0100

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0
0x086 d a t a 1 0 1
0x006 d a t a 1 0 0

0 0

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

20

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438

• 4. Load byte @0x034

• 5. Load byte @0x836
• 1000 0011 0110

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0
0x086 d a t a 1 0 1
0x006 d a t a 1 0 0

0 0

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

21

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438

• 4. Load byte @0x034

• 5. Load byte @0x836
• 1000 0011 0110

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0
0x086 d a t a 1 0 1
0x006 d a t a 1 0 1
0x106 d a t a 1 0 0

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

22

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438

• 4. Load byte @0x034

• 5. Load byte @0x836

• 6. Load byte @0x234
• 0010 0011 0100

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0
0x086 d a t a 1 0 1
0x006 d a t a 1 0 1
0x106 d a t a 1 0 0

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

23

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438

• 4. Load byte @0x034

• 5. Load byte @0x836

• 6. Load byte @0x234
• 0010 0011 0100

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0
0x086 d a t a 1 0 1
0x006 d a t a 1 0 1
0x106 d a t a 1 0 0

0

1

Index

8-bit
tag

Victim

Set-Associative Cache Cache Metrics &Performance

24

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438

• 4. Load byte @0x034

• 5. Load byte @0x836

• 6. Load byte @0x234
• 0010 0011 0100

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0
0x086 d a t a 1 0 1
0x046 d a t a 1 0 0
0x106 d a t a 1 0 1

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

25

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438

• 4. Load byte @0x034

• 5. Load byte @0x836

• 6. Load byte @0x234

• 7. Store byte @0x789, 0x0(write allocate)
• 0111 1000 1001

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0
0x086 d a t a 1 0 1
0x046 d a t a 1 0 0
0x106 d a t a 1 0 1

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

26

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438

• 4. Load byte @0x034

• 5. Load byte @0x836

• 6. Load byte @0x234

• 7. Store byte @0x789, 0x0(write allocate)
• 0111 1000 1001

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 0
0x086 d a t a 1 0 1
0x046 d a t a 1 0 0
0x106 d a t a 1 0 1

0

1

Index

8-bit
tag

Victim

Set-Associative Cache Cache Metrics &Performance

27

N-Way SA Cache-Example
• Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set,
write-back, cold start, 12-bit addr.

• 1. Load byte @0x43B

• 2. Load byte @0x430

• 3. Load byte @0x438

• 4. Load byte @0x034

• 5. Load byte @0x836

• 6. Load byte @0x234

• 7. Store byte @0x789, 0x0(write allocate)
• 0111 1000 1001

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 1
0x0F1 d a 0 a 1 1 0
0x046 d a t a 1 0 0
0x106 d a t a 1 0 1

0

1

Index

8-bit
tag

Set-Associative Cache Cache Metrics &Performance

28

N-Way SA Cache Mapping Patterns
• Assume 2-Way set-associative,

4B block size; 6-bit address;

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 1
0x0F1 d a 0 a 1 1 0
0x046 d a t a 1 0 0
0x106 d a t a 1 0 1

0

1

Index

Address
Tag Index Offset
000 0 xx
000 1 xx
001 0 xx
001 1 xx
010 0 xx
010 1 xx
011 0 xx
011 1 xx
100 0 xx
100 1 xx
101 0 xx
101 1 xx
110 0 xx
110 1 xx
111 0 xx
111 1 xx

Set-Associative Cache Cache Metrics &Performance

29

N-Way SA Cache Mapping Patterns
• Assume 2-Way set-associative,

4B block size; 6-bit address;

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 1
0x0F1 d a 0 a 1 1 0
0x046 d a t a 1 0 0
0x106 d a t a 1 0 1

0

1

Index

Address
Tag Index Offset
000 0 xx
000 1 xx
001 0 xx
001 1 xx
010 0 xx
010 1 xx
011 0 xx
011 1 xx
100 0 xx
100 1 xx
101 0 xx
101 1 xx
110 0 xx
110 1 xx
111 0 xx
111 1 xx

Set-Associative Cache Cache Metrics &Performance

30

N-Way SA Cache Mapping Patterns
• Assume 2-Way set-associative,

4B block size; 6-bit address;

Tag DATA Valid Dirty LRU
0x087 d a t a 1 0 1
0x0F1 d a 0 a 1 1 0
0x046 d a t a 1 0 0
0x106 d a t a 1 0 1

0

1

Index

Address
Tag Index Offset
000 0 xx
000 1 xx
001 0 xx
001 1 xx
010 0 xx
010 1 xx
011 0 xx
011 1 xx
100 0 xx
100 1 xx
101 0 xx
101 1 xx
110 0 xx
110 1 xx
111 0 xx
111 1 xx

Set-Associative Cache Cache Metrics &Performance

31

Conflict Miss is Mitigated
• Compulsory (cold start or process migration, 1st reference):

• First access to block impossible to avoid; small effect for long running programs
• Solution: increase block size (increases miss penalty; very large blocks could

increase miss rate)

• Capacity:
• Cache cannot contain all blocks accessed by the program
• Solution: increase cache size (may increase access time)

• Conflict (Collision):
• Multiple memory locations mapped to the same cache location, conflict even

when the cache has not reached full capacity.
• Solution 1: increase cache size
• Solution 2: increase associativity (may increase access time)

Set-Associative Cache Cache Metrics &Performance

32

Conflict Miss is Mitigated
• Worst case reference case with a 4B cache blocks;

• 4 cache blocks with index i = 1-bit width; 2-way set-associative

• t = 12 - 2 - 1 = 9 bit width;

• Load the 0th element and the 4th element of an int array a altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000 Address of the 0th element

Tag DATA

0

1

Set-Associative Cache Cache Metrics &Performance

33

Conflict Miss is Mitigated
• Worst case reference case with a 4B cache blocks;

• 4 cache blocks with index i = 1-bit width; 2-way set-associative

• t = 12 - 2 - 1 = 9 bit width;

• Load the 0th element and the 4th element of an int array a altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000 Address of the 0th element

Tag DATA
xxxxxxx00 a[0]0

1

Set-Associative Cache Cache Metrics &Performance

34

Conflict Miss is Mitigated
• Worst case reference case with a 4B cache blocks;

• 4 cache blocks with index i = 1-bit width; 2-way set-associative

• t = 12 - 2 - 1 = 9 bit width;

• Load the 0th element and the 4th element of an int array a altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

• xxxx xxx1 0000

Address of the 0th element
Tag DATA

xxxxxxx00 a[0]
xxxxxxx10 a[4]

0

1

Address of the 4th element

Set-Associative Cache Cache Metrics &Performance

35

Conflict Miss is Mitigated
• Worst case reference case with a 4B cache blocks;

• 4 cache blocks with index i = 1-bit width; 2-way set-associative

• t = 12 - 2 - 1 = 9 bit width;

• Load the 0th element and the 4th element of an int array a altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

• xxxx xxx1 0000

• xxxx xxx0 0000

Tag DATA
xxxxxxx00 a[0]
xxxxxxx10 a[4]

0

1

Address of the 0th element

Address of the 4th element

Address of the 0th element
Cache

Hit

Set-Associative Cache Cache Metrics &Performance

36

Conflict Miss is Mitigated
• Worst case reference case with a 4B cache blocks;

• 4 cache blocks with index i = 1-bit width; 2-way set-associative

• t = 12 - 2 - 1 = 9 bit width;

• Load the 0th element and the 4th element of an int array a altenately;

• Cold start with an empty cache;
• xxxx xxx0 0000

• xxxx xxx1 0000

• xxxx xxx0 0000

• xxxx xxx1 0000

Tag DATA
xxxxxxx00 a[0]
xxxxxxx10 a[4]

0

1

Address of the 0th element

Address of the 4th element

Address of the 0th element

Cache
Hit

Address of the 4th element

Avoid the ping-pong effect

Set-Associative Cache Cache Metrics &Performance

37

No Free Lunch-Hardware Implementation

8
Index

Index
0
1
2
.
.
.

253
254
255

31 30 . . . 10 11 9 . . . 2 1 0 Byte offset

22Tag

Hit

Data

32

Tag DataV Tag DataV Tag DataV Tag DataV

22 22

Set-Associative Cache Cache Metrics &Performance

38

Set-Associative Cache Terminology
• Cache capacity/size: total size of the cache (C)
• Cache block size: CB → decides the number of offset bits (o)

2o = CB

• Number of cache blocks (#cache block, M)
M * CB = C

• Bit width of memory address (w)
• N-way SA cache: N cache blocks in a set
• #set = M/N
• Bit width of Index (i): log2(#set) or log2(#M/N)
• Bit width of Tag (t): t = w - o - i bits
• Hardware implication: comparators? actual storage requirement?
• Given N-way, t, i and o, total capacity = 2o * 2i * N

Set-Associative Cache Cache Metrics &Performance

39

Tune the Knobs
• Given N-way, t, i and o, total capacity = 2o * (2i * N)

Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)

Tag is all the bits except
block and byte offset

Direct mapped
(only one way)

Smaller tags, only a
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the byte in the block

1 bitNumber of sets doubles;
Way/block per set halves

Set-Associative Cache Cache Metrics &Performance

40

Tune the Knobs
• Given N-way, t, i and o, total capacity = 2o * (2i * N)

Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)

Tag is all the bits except
block and byte offset

Direct mapped
(only one way)

Smaller tags, only a
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the byte in the block

1 bit Number of sets halves;
Way/block per set doubles

Set-Associative Cache Cache Metrics &Performance

41

Tune the Knobs
• Given N-way, t, i and o, total capacity = 2o * (2i * N)
• Example: different organizations of an 8-block cache

Total number blocks is equal to
number of sets × associativity. For
fixed cache size and fixed block
size, increasing associat iv i ty
decreases number of sets while
increasing number of elements per
set. With eight blocks, an 8-way
set-associative cache is same as
a fully associative cache.

Set-Associative Cache Cache Metrics &Performance

42

Cache Design Space
• Several interacting dimensions

• Cache size

• Block size

• Associativity

• Replacement policy

• Write-through vs. write-back

• Write allocation

• Optimal choice is a compromise
• Depends on access characteristics

• Workload

• Use (I-cache, D-cache)

• Depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

Set-Associative Cache Cache Metrics &Performance

43

Real Stuff

Set-Associative Cache Cache Metrics &Performance

44

Real Stuff-GPU
One streaming multi-processor inside an H100 GPU

Credit to Nvidia
More in EE219 AI computing systems

• L0/L1 instruction cache;
• L1 data cache, private to

each streaming multi-
processor (SM) mixed with
configurable shared memory
(scratchpad memory,
managed explicitly by the
programmers);

• L2 unified cache for all SMs;

Set-Associative Cache Cache Metrics &Performance

45

Real Stuff-NPU

Credit to Huawei
More in EE219 AI computing systems

Set-Associative Cache Cache Metrics &Performance

46

Cache Performance & Metrics
• Hit rate: fraction of accesses that hit in the cache
• Miss rate: 1 – Hit rate
• Miss penalty: time to replace a line/block from lower level in memory

hierarchy to cache
• Hit time: time to access cache memory (including tag comparison)
• Average Memory Access Time (AMAT) is the average time to access

memory considering both hits and misses in the cache

AMAT = Time for a hit + Miss rate × Miss penalty

Set-Associative Cache Cache Metrics &Performance

47

AMAT
• Average Memory Access Time (AMAT) is the average time to access

memory considering both hits and misses in the cache

AMAT = Time for a hit + Miss rate × Miss penalty

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)

Data Cache

Instr. Cache
Third-Level

Cache
(SRAM)

• Each level may have different hit time, miss rate and miss penalty
• To reduce miss rate and miss penalty

Set-Associative Cache Cache Metrics &Performance

48

AMAT: Single-Level Cache
• Assume L1 cache only: hit time 1 cycle; miss rate 5%; miss penalty

100 cycles;

AMAT = Time for a hit + Miss rate × Miss penalty

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)L1 Cache

(SRAM)

Third-Level
Cache

(SRAM)

AMAT = 1 clock cycle + 5% × 100 clock cycles = 6 clock cycles

Set-Associative Cache Cache Metrics &Performance

49

AMAT: Multi-Level Cache
• Assume L1 & L2 cache only:
• L1 hit time 1 cycle; miss rate 5%;
• L2 hit time 5 cycles, miss rate 10%, miss penalty 100 cycles;

AMAT = Time for a hit + Miss rate × Miss penalty

Second-
Level
Cache

(SRAM)

Controller

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip (CPU) Components

RegFile

Main
Memory
(DRAM)L1 Cache

(SRAM)

Third-Level
Cache

(SRAM)

L2 AMAT = 5 clock cycles + 10% × 100 clock cycles = 15 clock cycles

L1 AMAT = Time for an L1 hit + L1 Miss rate ×L2 AMAT

AMAT = 1 clock cycle + 5% × 15 clock cycles = 1.75 clock cycles

Set-Associative Cache Cache Metrics &Performance

50

AMAT Pitfall: Local vs. Global Miss Rate
• Local miss rate – the fraction of references to one level of a cache that

miss
E.g. Local Miss rate L2$ = $L2 Misses / L1$ Misses

• Global miss rate – the fraction of references that miss in all levels of a
multilevel cache
• L2$ local miss rate >> than the global miss rate
 E.g. Global Miss rate (two-level cache) = L2$ Misses/Total Accesses
= (L2$ Misses / L1$ Misses) × (L1$ Misses / Total Accesses)
= Local Miss rate L2$ × Local Miss rate L1$

AMAT = Time for a hit + Miss rate × Miss penalty
AMAT = Time for a L1 cache hit + (local) Miss rate L1 cache × (Time
for a L2 cache hit + (local) Miss rate L2 cache × L2 cache miss penalty)

Set-Associative Cache Cache Metrics &Performance

51

Improve Cache Performance
• Reduce time for a hit, miss rate and miss penalty (additional time cost

compared to cache hit);
– Reduce hit time: use smaller cache but may increase miss rate

(capacity miss)
– Reduce miss rate: this is complex

• Program dependent;
• Larger capacity (may decrease capacity miss but increase hit time

and hardware cost);
• Higher associativity (may reduce conflict miss; but require extra

considertaion for replacement policy and increase hardware cost)
• Larger cache blocks (may reduce compulsory miss; better spatial

locality usage; but may harm temporal locality with recently-used
data evicted)

Set-Associative Cache Cache Metrics &Performance

52

Example of Cache Optimization
• Choice of DM cache versus SA cache depends on the cost of a miss

versus the cost of implementation;

Largest gains are in
going from direct
mapped to 2-way
(20%+ reduction in
miss rate)

Set-Associative Cache Cache Metrics &Performance

53

3Cs Analysis
• Three sources of misses (SPEC2000 integer and floating-point benchmarks)

– Compulsory misses 0.006%, not visible
– Capacity misses, function of cache size
– Conflict portion depends on associativity and cache size

Conflict
misses

Set-Associative Cache Cache Metrics &Performance

54

Improve Cache Performance
• Reduce time for a hit, miss rate and miss penalty (additional time cost

compared to cache hit);
– Reduce miss penalty:

• Prefetch
– programmer/compiler: I know that, later on, I will need this

data;
– Can be as an explicit prefetch instruction;
– Or an implicit instruction: lw x0 0(t0)
– Won't stall the pipeline on a cache miss: The processor

control logic recognizes this situation;
– Allows you to hide the cost of cache misses;
– But favors big cache;

Set-Associative Cache Cache Metrics &Performance

55

Improve Cache Performance
• Reduce time for a hit, miss rate and miss penalty (additional time cost

compared to cache hit);
– Reduce miss penalty:

• Increase level of cache
– Refer to previous example
– But significantly increase hardware cost

• Victim cache
– Optionally have a very small (16-64 entry) fully associative

“victim” cache

Controller

Datapath

On-Chip (CPU) Components

RegFile

Tag DATA

LLC

Victim
cache

Eviction

Set-Associative Cache Cache Metrics &Performance

56

Summary
• Fully associative cache: cache block can go anywhere, no index field,

but requires 1 comparator/block;
• Direct mapped cache: cache block can go exactly one block, requires

only 1 comparator; #sets = #blocks; no replacement policy required;
• N-way set-associative cache: N places for a cache block; #sets =

#blocks/N; requires N comparators;
• Replacement policy: LRU; write policy: write-back vs. write-through,

(non-)write-allocate on write miss;
• Cache performance and optimization: reduce the miss rate and penalty

mainly

