,E EEMNESEARERE

1‘5:— ,;E School of Information Science and Technology

CS 110
Computer Architecture
Cache |V Set-Associative Cache

Instructors:
Chundong Wang, Siting Liu & Yuan Xiao
Course website: https://toast-
lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2025/index.html
School of Information Science and Technology (SIST)
ShanghaiTech University

2025/4/24

Administratives

Mid-term |l tentatively May 15th 8am-10am; you can bring 2-page
A4-sized double-sided cheat sheet, handwritten only! (Teaching
center 201/301/303);

Project 2.1 released, start early, ddl May 5th!!!
Project 2.2 to be released soon. Keep an eye on Piazza/webpage post.
HWS5 released, ddl May. 7th.

Lab 9 checking this week. Lab 10 is released and will be checked next
week (longan nano RISC-V board). Prepare in advance!

« (CS110-only students need the board for lab 10 & 11 only;
« CS110P project 4 will use this board to develop a game;

 Keep them really well, because you have to return the board after
lab/project checking;

Discussion this week on cache;

Discussion Apr. 28th on midterm Il review
2

Administratives

Special arrangement for Lab sessions during Labour Day Holiday

Apr. 27th, 18:00-19:40: Thursday lab sessions (Lab 7/8/9) to
check Lab 10; (SIST 1B-106, 1B-108, SIST 1B-110)

Apr. 28th, 18:00-19:40: Monday lab sessions (Lab 1/2) to
check Lab 10;

Apr. 29th, 19:50-21:30: Tuesday lab sessions (Lab 3/4/5/6) to
check Lab 10;

May 6th/8th/12th: Tuesday/Thursday/Monday lab sessions to
check Lab 11, respectively, which is to prepare for project 4,
Longan nano RISC-V development.

The circuit boards will be distributed during the lab 10
sessions. Bring your laptop and USB type-C cable.

Set-Associative Cache

Cache Design: Placement Policies

Fully Direct
Associative Mapped
Cache Set-Associative Cache
Cache
Put a new line (This lecture) Put a new line
anywhere In one specific

place

Put a new line in
several specific places

Fully associative caches

need expensive hardware. Less hardware.

Memory blocks >> # Cache blocks
We need to carefully place memory blocks into cache blocks

Set-Associative Cache

Set-Associative (SA) Cache

Placement policy: The data can only |ndex
be stored at one index, but there are
multiple slots/blocks.

« To check for existence in the cache, we
check all cache blocks associated with S€t
the same index.

Associativity of a cache: The number
of slots assigned to each index/set.

Set 0

Tag DATA Flag

Set-Associative Cache

N-Way Set-Associative Cache

« Associativity of a cache: The number
of slots assigned to each index.

N-Way Set Associative: groups of N
cache lines are assigned a unique index

« 2-Way Set Associative (see right)

4 cache blocks

Each index is associated with a
set of N = 2 lines

Two indices: 0 and 1

Index

0

Tag DATA Flag

Set-Associative Cache

Designing N-Way SA Cache

N-Way Set Associative: groups of N
cache blocks are assigned a unique
index.

1. Which mapping represents a 32B 2-
way SA Cache with 4B cache blocks?

2. Do SA caches have Tags? Indices?
Offsets?

3. Do SA cache blocks need a valid bit?

4. What write policies can SA Caches
support?

5. SA Caches support block replacement
policies. How does LRU work?

Index
A. B.

0<

1<

Tag DATA Flag

Set-Associative Cache

Designing N-Way SA Cache

Index
« N-Way Set Associative: groups of N, Tag DATA Flag
cache blocks are assigned a unique
index. 0<
1. Which mapping represents a 32B 2-
way SA Cache with 4B cache blocks? 1
'
2
1<
3
\.

Set-Associative Cache

Designing N-Way SA Cache

Index
« N-Way Set Associative: groups of N Tag DATA Flag
cache blocks are assigned a unique 0
index.
’
2. Do SA caches have Tags? Indices?
Offsets? 2
3

XXXX XXXX XXXX

8- blt 2-bit \Z bit
tag index offset

Set-Associative Cache

Designing N-Way SA Cache

Index
« N-Way Set Associative: groups of N Tag DATA Flag

cache blocks are assigned a unique 0
index.

’

2
3. Do SA cache blocks need a valid bit?

3

Yes! All caches need to “warm up”.

10

Set-Associative Cache

Designing N-Way SA Cache

N-Way Set Associative: groups of N
cache blocks are assigned a unique
index.

4. What write policies can SA Caches
support?

Index

Tag DATA Flag

Write-back (needs dirty bit),
write-through

11

Set-Associative Cache

Designing N-Way SA Cache

Index
« N-Way Set Associative: groups of N Tag DATA Flag
cache blocks are assigned a unique 0
index.
1
2
3

5. SA Caches support block replacement

policies. How does LRU work?
LRU (and all block replacement policies)
occur within each set of cache blocks.

Above, LRU considers N = 2 blocks.

12

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU
4B block size, LRU within each set, 0 { 0 | 0
write-back, cold start, 12-bit addr. 0 | ©
1. Load byte @0@x43B 1 g g

« 0100 0011 1011

13

Set-Associative Cache

N-Way SA Cache-Example

* Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set, o { 0x087|djajtja] 1 | 0 | ©
write-back, cold start, 12-bit addr.

« 1. Load byte @0x43B 1
« 0100 0011 1011

0 0
0 0
0 0

14

Set-Associative Cache

N-Way SA Cache-Example

Index

* Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set, 0 { 0x087 |d|ajtla] 1 | @ | 1
write-back, cold start, 12-bit addr. 0x086|d|a|t|a 0

« 1. Load byte @0x43B 1
« 2. Load byte @0x430
« 0100 0011 0000

1 0
0 0
0 0

15

Set-Associative Cache

N-Way SA Cache-Example

* Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set, o { 0x087|djajtja] 1 | 0 | 1
write-back, cold start, 12-bit addr. 0x086|djajtja) 1 0
1. Load byte @0@x43B 1 g

2. Load byte @0x430
3. Load byte @0@x438
« 0100 0011 1000

0
0
0

16

Set-Associative Cache

N-Way SA Cache-Example

* Assume 2-Way 16B Set-Associative,

4B block size, LRU within each set, 0 { 0x087 |dlajtjal] 1 | @ | @

write-back, cold start, 12-bit addr. 0x086 djajtjla] 1 | 0 | 1
1. Load byte @0x43B 1 g g
« 2. Load byte @0x430
« 3. Load byte @0x438 Cache

« 0100 0011 1000 HIT!

17

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU

4B block size, LRU within each set, o { 0x087|djajtja] 1 | 0 | ©
write-back, cold start, 12-bit addr. 6x@86 |djajtja) 1 1
1. Load byte @0@x43B 1 g

2. Load byte @0x430
3. Load byte @0@x438
4. Load byte @0x034
« 0000 0011 0100

0
0
0

18

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU

4B block size, LRU within each set, 0 { 0x087 |djajtjlal 1 | @ | 0
write-back, cold start, 12-bit addr. 0x086 djajtjla] 1 | 0 | 1
1. Load byte @0x43B 1 <|0x006|dja|t]a] 1 o | ©
2. Load byte @0x430 0 0

3. Load byte @@x438
4. Load byte @0x034
« 0000 0011 0100

19

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU

4B block size, LRU within each set, o { 0x087|djajtja] 1 | 0 | ©

write-back, cold start, 12-bit addr. 0x086 |d|a|t|a 1

1 0
1. Load byte @0x43B (R LI ; g :

« 2. Load byte @0x430
« 3. Load byte @0x438
4. Load byte @0x034
« 5. Load byte @0x836

- 1000 0011 0110

20

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU
4B block size, LRU within each set, 0 { 0x087 |djajtjlal 1 | @ | 0
write-back, cold start, 12-bit addr. 0x086 |djajtja| 1 | 0 | 1
+ 1. Load byte @0x43B 1 < Rl ol B
0x1l06 |d|a|t|a] 1 0 0

« 2. Load byte @0x430
« 3. Load byte @0x438
4. Load byte @0x034
« 5. Load byte @0x836

- 1000 0011 0110

21

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU
4B block size, LRU within each set, 0 { 0x087 |djajtjlal 1 | @ | 0
write-back, cold start, 12-bit addr. 0x086 |djajtja| 1 | 0 | 1
+ 1. Load byte @0x43B 1 < Rl ol B
0x106 |d|ja|t|a| 1 0 0

« 2. Load byte @0x430
« 3. Load byte @0x438
4. Load byte @0x034
« 5. Load byte @0x836
« 6. Load byte @0x234

* 0010 0011 0100

22

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU
4B block size, LRU within each set, 0 { 0x087 |djajtjlal 1 | @ | 0
write-back, cold start, 12-bit addr. 0x086 djajtjla] 1 | 0 | 1
0x006 |d|a|t|a| 1 0 1
« 1. Load byte @0x43B Pt 1
g Victim 0x106|d|altlal] 1 | @ | ©

« 2. Load byte @0x430
« 3. Load byte @0x438
4. Load byte @0x034
« 5. Load byte @0x836
« 6. Load byte @0x234

* 0010 0011 0100

23

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU
4B block size, LRU within each set, 0 { 0x087 |djajtjlal 1 | @ | 0
write-back, cold start, 12-bit addr. 0x086 |djajtja| 1 | 0 | 1
+ 1. Load byte @0x43B 1 <|0x046|djajtia] 1 | 0 | O
0x106 |d|ja|t|a| 1 0 1

« 2. Load byte @0x430
« 3. Load byte @0x438
4. Load byte @0x034
« 5. Load byte @0x836
« 6. Load byte @0x234

* 0010 0011 0100

24

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU
4B block size, LRU within each set, 0 { 0x087 |d/a|tla| 1 | 0 | @
write-back, cold start, 12-bit addr. 0x086 |djajtja| 1 | 0 | 1
+ 1. Load byte @0x43B 1 < Rl o
0x106 |d|a|t|la| 1 0 1

« 2. Load byte @0x430

« 3. Load byte @0x438

4. Load byte @0x034

« 5. Load byte @0x836

« 6. Load byte @0x234

« 7. Store byte @0x789, 0x0(write allocate)
« 0111 1000 1001

25

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU
4B block size, LRU within each <t 110x087 dja|tj]a| 1 | @ | ©
write-back. cold start, 12-bit.a.. VICUM x086 |d|a|tja| 1 | @ | 1
« 1. Load byte @0x43B 1 <10x046|d]a|t]a] 1 0 0
0x106 |d|a|t|la| 1 0 1

« 2. Load byte @0x430

« 3. Load byte @0x438

4. Load byte @0x034

« 5. Load byte @0x836

« 6. Load byte @0x234

« 7. Store byte @0x789, 0x0(write allocate)
« 0111 1000 1001

26

Set-Associative Cache

N-Way SA Cache-Example

Index
« Assume 2-Way 16B Set-Associative, Tag DATA Valid Dirty LRU
4B block size, LRU within each set, 0 { 0x087 |djajt|jal 1 0 1
write-back, cold start, 12-bit addr. OxOFl|dlaj@ja] 1 | 1 | 0
+ 1. Load byte @0x43B 1 < Rl o
0x106 |d|a|t|la| 1 0 1

« 2. Load byte @0x430

« 3. Load byte @0x438

4. Load byte @0x034

« 5. Load byte @0x836

« 6. Load byte @0x234

« 7. Store byte @0x789, 0x0(write allocate)
« 0111 1000 1001

27

Set-Associative Cache

N-Way SA Cache Mapping Patterns

 Assume 2-Way set-associative,
4B block size; 6-bit address;

Address

Tag Index Offset

000 0 XX

000 1 XX

001 0 . Index

R

010 0 XX 0x087 |d|jajt|ja] 1 0 1

010 ‘ o OxOF1|dlal@ja] 1 | 1 | ©

o : = 0x046 |d|altla| 1 | 0 | o
XX

100 0 XX 0x106 |[d|a|t|a| 1 0 1

100 1 XX

101 0 XX

101 1 XX

110 0 XX

110 1 XX

111 0 XX

111 1 XX 28

Set-Associative Cache

N-Way SA Cache Mapping Patterns

 Assume 2-Way set-associative,
4B block size; 6-bit address;

Address

Tag Index Offset

000 0 XX

000 1 XX

001 0 . Index

R

010 0 XX 0x087 |d|jajt|ja] 1 0 1

010 ‘ o OxOF1|dlal@ja] 1 | 1 | ©

o : = 0x046 |d|altla| 1 | 0 | o
XX

100 0 XX 0x106 |[d|a|t|a| 1 0 1

100 1 XX

101 0 XX

101 1 XX

110 0 XX

110 1 XX

111 0 XX

111 1 XX 2

Set-Associative Cache

N-Way SA Cache Mapping Patterns

 Assume 2-Way set-associative,
4B block size; 6-bit address;

Address
Tag Index Offset
000 0 XX
000 1 XX
001 0 XX
001 1 XX Tag DATA Valid Dirty LRU
010 0 XX 0x087 |d|jajt|ja] 1 0 1
010 ‘ o OxOF1|dlalolal 1 | 1 | ©
011 0 XX
011 - Ox046 |d|a|t|ja| 1 0 0
XX
100 0 XX Ox106 |djalt|a| 1 0 1
100 1 XX
101 0 XX
101 1 XX
110 0 XX
110 1 XX
111 0 XX
30
111 1 XX

Set-Associative Cache

Conflict Miss is Mitigated

« Conflict (Collision):

* Multiple memory locations mapped to the same cache location, conflict even
when the cache has not reached full capacity.

« Solution 1: increase cache size

« Solution 2: increase associativity (may increase access time)

31

Set-Associative Cache

Conflict Miss is Mitigated

» Worst case reference case with a 4B cache blocks;

* 4 cache blocks with index i = 1-bit width; 2-way set-associative

¢« t=12-2-1 =9 bit width;

 Load the element and the element of an 1nt array a altenately;

« (Cold start with an empty cache;

XXXX XXXO 0000 Address of the Oth element
Tag DATA

0
y

32

Set-Associative Cache

Conflict Miss is Mitigated

» Worst case reference case with a 4B cache blocks;

* 4 cache blocks with index i = 1-bit width; 2-way set-associative

¢« t=12-2-1 =9 bit width;

 Load the element and the element of an 1nt array a altenately;

« (Cold start with an empty cache;

XXXX XXXO 0000 Address of the Oth element
Tag DATA

OJ XXXXXXX00 | al0]

]

33

Set-Associative Cache

Conflict Miss is Mitigated

» Worst case reference case with a 4B cache blocks;

* 4 cache blocks with index i = 1-bit width; 2-way set-associative

¢« t=12-2-1 =9 bit width;

 Loadthe element and the element of an 1nt array a altenately;

« (Cold start with an empty cache;

XXXX XXXO 0000 Address of the Oth element
Tag DATA

e XXXX XXX1 0000 Address of the 4th element O-[XXXXXXX00 a[@]

]

XXXXXXX10 | al4]

34

Set-Associative Cache

Conflict Miss is Mitigated

» Worst case reference case with a 4B cache blocks;

* 4 cache blocks with index i = 1-bit width; 2-way set-associative

¢« t=12-2-1 =9 bit width;

 Load the element and the element of an 1nt array a altenately;

« (Cold start with an empty cache;

XXXX XXXO 0000 Address of the Oth element

Tag DATA
e XXXX XXX1 0000 Address of the 4th element 0 _[XXXXXXX00 alo]
e XXXX XXXO 0000 Address of the Oth el nent XXXXXXX10 al4d]

Hit

Cache 1 j

35

Set-Associative Cache

Conflict Miss is Mitigated

» Worst case reference case with a 4B cache blocks;

* 4 cache blocks with index i = 1-bit width; 2-way set-associative

¢« t=12-2-1 =9 bit width;

 Load the element and the element of an 1nt array a altenately;

« (Cold start with an empty cache;

XXXX XXXO 0000 Address of the Oth element

Tag DATA
e XXXX XXX1 0000 Address of the 4th element O-[XXXXXXX00 alo]
e XXXX XXXO 0000 Address of the Oth element XXXXXXX10 | al4]
e XXXX XXX1 0000 Address of theidth element 1 j
acne \
Hit

Avoid the ping-pong effect

36

Set-Associative Cache

No Free Lunch-Hardware Implementation

Byte offset

3130 ... 10119 ...210
| rd Data
Tag NPy N
Index
ndex V128 * Data ,, Tag Data Tag « Data Tag < Data

- - - - Hit

Set-Associative Cache

Set-Associative Cache Terminology

« (Cache capacity/size: total size of the cache (C)
« (Cache block size: Cg — decides the number of offset bits (0)
20 = Cg
 Number of cache blocks (#cache block, M)
M*Cg=C
 Bit width of memory address (w)
« N-way SA cache: N cache blocks in a set
« #set=M/N
 Bit width of Index (i): log,(#set) or log,(#M/N)
« Bitwidth of Tag (t):t=w -0 -1 bits
« Hardware implication: comparators? actual storage requirement?
« Given N-way, t, i and o, total capacity =20 * 21 * N

38

Cache Metrics &Performance

Tune the Knobs

Given N-way, t, i and o, total capacity = 2° * (21 * N)

Used for tag compare Selects the set Selects the byte in the block
Tag Index Byte offset

Decreasing associativity «— ~ Increasing associativity

Direct mapped Fully associative

(only one way) | (only one set)
Smaller tags, only a |‘ =| Tag is all the bits except
single comparator block and byte offset

Number of sets doubles; 1 bit 4_‘
Way/block per set halves

39

Cache Metrics &Performance

Tune the Knobs

Given N-way, t, i and o, total capacity = 2° * (21 * N)

Used for tag compare Selects the set Selects the byte in the block
Tag Index Byte offset

Decreasing associativity «— ~ Increasing associativity

Direct mapped Fully associative
(only one way) | (only one set)
Smaller tags, only a |‘ =| Tag is all the bits except
single comparator block and byte offset
‘_> 1 bit Number of sets halves;

Way/block per set doubles

40

Cache Metrics &Performance

Tune the Knobs

Given N-way, t, i and o, total capacity = 2° * (21 * N)
Example: different organizations of an 8-block cache

One-way set associative
(direct mapped)
Block Tag Data

0

Two-way set associative Total number blocks is equal to
Set Tag Data Tag Data number of sets x associativity. For
fixed cache size and fixed block
size, increasing associativity
decreases number of sets while
increasing number of elements per
set. With eight blocks, an 8-way
set-associative cache is same as

FIEHF- Sy LSRRIV a fully associative cache.
Set Tag Data Tag Data Tag Data Tag Data
0

1

w N = O

~N o o koW Mhh =

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

41

Cache Metrics &Performance

Cache Design Space

Several interacting dimensions

o Cache size Cache Size

A

* Block size o
Associativity

* Associativity

 Replacement policy
* Write-through vs. write-back

_ Block Size
 Write allocation

Optimal choice is a compromise

 Depends on access characteristics

« Workload Bad _/

« Use (lI-cache, D-cache)
Good Factor Factor B

 Depends on technology / cost Less More

Simplicity often wins

42

Characteristic Intel Nehalem AMD Opteron X4 (Barcelona)

Cache Metrics &Performance

Real Stuff

L1 cache organization

Split instruction and data caches

Split instruction and data caches

L1 cache size

32 KB each for instructions/data per
core

64 KB each for instructions/data
per core

L1 cache associativity

4-way (l), 8-way (D) set associative

2-way set associative

L1 replacement

Approximated LRU replacement

LRU replacement

L1 block size

64 bytes

64 bytes

L1 write policy

Write-back, Write-allocate

Write-back, Write-allocate

L1 hit time (load-use)
L2 cache organization

Not Available
Unified (instruction and data) per core

3 clock cycles

Unified (instruction and data) per core

L2 cache size

256 KB (0.25 MB)

512 KB (0.5 MB)

L2 cache associativity

8-way set associative

16-way set associative

L2 replacement

Approximated LRU replacement

Approximated LRU replacement

L3 cache organization

Unified (instruction and data)

L2 block size 64 bytes 64 bytes
L2 write policy Write-back, Write-allocate Write-back, Write-allocate
L2 hit time Not Available 9 clock cycles

Unified (instruction and data)

L3 cache size

8192 KB (8 MB), shared

2048 KB (2 MB), shared

L3 cache associativity

16-way set associative

32-way set associative

L3 replacement Not Available Evict block shared by fewest cores
L3 block size 64 bytes 64 bytes

L3 write policy Write-back, Write-allocate Write-back, Write-allocate

L3 hit time Not Available 38 (?)clock cycles

43

Cache Metrics &Performance

Real Stuff-GPU

One streaming multi-processor inside an H100 GPU

 LO/L1 instruction cache;
« L1 data cache, private to T —

Digpatch Unit (32 threadiclk) Dispatch Unit {32 thread/clk)

e ach Stre amln multl Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
-
g FP3Z FP32 FPE4 FP32 FP32 FrBa
FP3Z FP32 FPE4 FPiz FPaz FPed
] . FP3Z FP32 FPE4 FP12 FP32 FP84
FP3Z FP32 FPE4 FP32 FP32 FPE4
Processor mixea Wwi =
FP32z FP12 FPE4 FP3Z FP32 FPE4
FP3z FP32 FPE4 FPaz FP3z FPE4
. FP3Z FP32 FPE4 TENSOR CORE FP32 FP32 FPB4 TENSOR CORE
configurable shared memor i f o AGENERATION || MM FE i 4" GENERATION
g y FP3Z FP32 FPE4 FP32 FP32 FPed
FP3z FPa2 FPE4 FP32 FPaz FP&4

FPIZ FPa2 FPE4 FP32 FPa2 FP&4
FP32 FP32 FPE4 FP32 FP32 FPE4

(scratchpad memory, nE mE
managed explicitly by the - L ERR AES AR
p rog r a m m e r S) ; : Dispatch Unit glsz threadiclk) Dispateh Unit (32 ihrud.':lk}l .

&7 & 8T BT BT ET. 6 8T 8T ST ST ST 8T 8T
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

£ INT3Z FP32 FP32 FPa4 INT3Z FP32 FP32 FPe4
unified cache 1or a S — =T WIS s PR3z e
INT32 FP32 FP32 FPE4 INT32 FP3Z FP32 FPB4
INT32 FP32 FP32 FPB4 INT32 FP32 FP32 FPE4
INT22 FP32 FP32 FPE4 INT32 FP32 FP32 FPB4
INT3Z2 FP3Z FPi2 FPB&4 INT32 FP3Z FP3Z FPiE4
INT32 FP32 FP3Z FPE4 INT32 FP32 FP32 FPE4
INT32 FP32 FP32 FPBE4 TENSOR CORE INT32 FP32 FP32 FP&4 TENSOR CORE
INT32 FP32 FP32 FPE4 4™ GENERATION INTa2 FP32 FP32 FP84 4" GENERATION
INT22 FP32 FP32 FP&4 INT32 FP32 FP32 FPE4
INT32 FP3z FP32 FPB4 INT32 FP32 FP32 FPiE4
INT22 FP32 FP32 FPB4 INT32 FP32 FP32 FP&E4
INT32 FP3z FPaz2 FPE4 INT32Z FP32 FP32 FPB4
INT32 FP3Z FP32 FPB&4 INTI2 FP3Z FP32 FPE4
INT32 FP32 FP3Z FPB4 INT32 FP32 FP32 FPB4
INT32 FP3z FP32 FPB4 INT32 FP32 FP32 FPB4

Lo Loy Lo Lo Lo Loy Lo Lo Loy Loy Lo LoV Lo Loy Lo Lo
&T 5T sT 5T 5T 5T 5T 5T SFU -1 8T 5T -1 sT T sT BT SFU

Tensor Memory Accelerator

Credit to Nvidia a4

More in EE219 Al computing systems

Cache Metrics &Performance

Real Stuff-NPU

Credit to Huawei 45

More in EE219 Al computing systems

Cache Metrics &Performance

Cache Performance & Metrics

Hit rate: fraction of accesses that hit in the cache

Miss rate: 1 — Hit rate

Miss penalty: time to replace a line/block from lower level in memory
hierarchy to cache

Hit time: time to access cache memory (including tag comparison)
Average Memory Access Time (AMAT) is the average time to access
memory considering both hits and misses in the cache

AMAT = Time for a hit + Miss rate x Miss penalty

46

Cache Metrics &Performance

AMAT

* Average Memory Access Time (AMAT) is the average time to access
memory considering both hits and misses in the cache

AMAT = Time for a hit + Miss rate x Miss penalty

On-Chip (CPU) Components L™
Controller | Secondary
,,,,,,,, Main Memory
Datapath | .--"~ Second-| | Third-Level Memory (Disk
{instr. Cache Level Cache (DRAM) | | Or Flash)
RegFile Cache (SRAM)
| Data Cache | | (SRAM)

« Each level may have different hit time, miss rate and miss penalty
* To reduce miss rate and miss penalty

47

Cache Metrics &Performance

AMAT: Single-Level Cache

 Assume L1 cache only: hit time 1 cycle; miss rate 5%; miss penalty
100 cycles;

AMAT = Time for a hit + Miss rate x Miss penalty

On-Chip (CPU) Components Loemm™
Controller |77 Secondary
________ Main Memory
Datapath | _..-"7"~ Memory (Disk

' Or Flash
L1 Cache (DRAM))

b BLEEL o a aa—a

AMAT =1 clock cycle + 5% x 100 clock cycles = 6 clock cycles

48

Cache Metrics &Performance

AMAT: Multi-Level Cache

 Assume L1 & L2 cache only:
* L1 hit time 1 cycle; miss rate 5%;
* L2 hit time 5 cycles, miss rate 10%, miss penalty 100 cycles;

L1 AMAT = Time for an L1 hit + L1 Miss rate xL.2 AMAT

On-Chip (CPU) Components L™
Controller | 7 Secondary
________ Main Memory
Datapath | .-~ Second- Memory (Disk
e b Level (DRAM) | | Or Flash)
RegFile L1 Cache Cache
(SRAM) | | (sSRAM)

L2 AMAT = 5 clock cycles +10% x 100 clock cycles =15 clock cycles

AMAT =1 clock cycle + §% x 15 clock cycles =1.75 clock cycles 49

Cache Metrics &Performance

AMAT Pitfall: Local vs. Global Miss Rate

Local miss rate — the fraction of references to one level of a cache that
mISS
> E.g. Local Miss rate L2$ = $L2 Misses / L1$ Misses

Global miss rate — the fraction of references that miss in all levels of a
multilevel cache

« L2% local miss rate >> than the global miss rate

» E.g. Global Miss rate (two-level cache) = L2$ Misses/Total Accesses
= (L2$ Misses / L1$ Misses) x (L1$ Misses / Total Accesses)

= Local Miss rate L2% x Local Miss rate L13

AMAT = Time for a hit + Miss rate x Miss penalty
AMAT = Time for a L1 cache hit + (local) Miss rate L1 cache x (Time
for a L2 cache hit + (local) Miss rate L2 cache x L2 cache miss penalty)

50

Cache Metrics &Performance

Improve Cache Performance

* Reduce time for a hit, miss rate and miss penalty (additional time cost
compared to cache hit);
— Reduce hit time: use smaller cache but may increase miss rate
(capacity miss)
— Reduce miss rate: this is complex
* Program dependent;
« Larger capacity (may decrease capacity miss but increase hit time
and hardware cost);
* Higher associativity (may reduce conflict miss; but require extra
considertaion for replacement policy and increase hardware cost)
« Larger cache blocks (may reduce compulsory miss; better spatial
locality usage; but may harm temporal locality with recently-used

data evicted)

51

Cache Metrics &Performance

Example of Cache Optimization

« Choice of DM cache versus SA cache depends on the cost of a miss
versus the cost of implementation;

Largest gains are in
going from direct
mapped to 2-way
(20%+ reduction in
miss rate)

Miss rate

15% -

12% -

3%

6% -

3% A

4 KB

___16KB | .

32K5 . 64KB . _128KB

e a nd
One-way Two-way Four-way Eight-way

Associativity

52

Cache Metrics &Performance

3Cs Analysis

« Three sources of misses (SPEC2000 integer and floating-point benchmarks)
— Compulsory misses 0.006%, not visible
— Capacity misses, function of cache size
— Conflict portion depends on associativity and cache size

10%

9%

8% One-way L] Conflict

7% Twoway QIR =~ MSS€S

6% -

Miss rate 59, |
per type

Four-way [
4% A
3% -
2% A

Capacity
1% -

00/0 I 1 I I ! 1 1 1
4 8 16 32 64 128 256 512 1024

Cache size (KB)

53

Cache Metrics &Performance

Improve Cache Performance

* Reduce time for a hit, miss rate and miss penalty (additional time cost
compared to cache hit);
— Reduce miss penalty:

 Prefetch

programmer/compiler: | know that, later on, | will need this
data;

Can be as an explicit prefetch instruction;
Or an implicit instruction: lw x0 0(t0)

Won't stall the pipeline on a cache miss: The processor
control logic recognizes this situation;

Allows you to hide the cost of cache misses;
But favors big cache;

54

Cache Metrics &Performance

Improve Cache Performance

* Reduce time for a hit, miss rate and miss penalty (additional time cost
compared to cache hit);
— Reduce miss penalty:
* Increase level of cache

— Refer to previous example
— But significantly increase hardware cost

 Victim cache

— Optionally have a very small (16-64 entry) fully associative
“victim” cache

Controller

Datapath

Tag

DATA

RegFile

LLC

On-Chip (CPU) Components

Victim

j’ cache

—
-~
~

- > Eviction

55

Summary

Fully associative cache: cache block can go anywhere, no index field,
but requires 1 comparator/block;

Direct mapped cache: cache block can go exactly one block, requires
only 1 comparator; #sets = #blocks; no replacement policy required;
N-way set-associative cache: N places for a cache block; #sets =
#blocks/N; requires N comparators;

Replacement policy: LRU; write policy: write-back vs. write-through,
(non-)write-allocate on write miss;

Cache performance and optimization: reduce the miss rate and penalty
mainly

